SEP 19, 2016 10:47 AM PDT

Scientists Grow 3-D Lung-in-a-Dish from Stem Cells

WRITTEN BY: Xuan Pham
In the past year, biomedical engineers have created lab-grown heart cells, retinal nerve cells, and even vocal cords that can ‘talk.’ Adding to the astonishing list of organoids engineered in the lab, researchers at the University of California announced 3D lab-grown lung tissues.
 
Lab-grown lung-like tissue (left) resembles adult human lung (right) | Image: UCLA

"While we haven't built a fully functional lung, we've been able to take lung cells and place them in the correct geometrical spacing and pattern to mimic a human lung," said Brigitte Gomperts, an associate professor of pediatric hematology/oncology at UCLA, and the study's senior author.
 
The team began by chemically treating cells derived from adult lungs back to its stem cell state. Then, these cells were used to coat sticky hydrogel beads, which formed a scaffold for the 3-dimensional shape of the air sacs in the lungs.
 
"The technique is very simple," said Dan Wilkinson, a graduate student in the lab, and the paper's first author. "We can make thousands of reproducible pieces of tissue that resemble lung and contain patient-specific cells."
 
The straightforward approach of creating lungs-in-a-dish was intended to help researchers study defects in the lung that can’t be replicated meaningfully with two-dimensional (2-D) cells grown in a dish. In particular, it’s not possible to mimic the scarring that happens in idiopathic pulmonary fibrosis in 2-D cells because the sick cells appear to recover once taken out of the patient.
 

With the new technique, researchers are able to induce the fibrosis (scarring) with certain chemicals. This is a more accurate representation of the cells in patients with Idiopathic pulmonary fibrosis.
 
Furthermore, the model can be immensely useful in testing of new drug targets that slow down or potentially even reverse the lung scarring. Gomperts points out that because the procedure is very simple, multiple organoids can be grown just for one patient. She sees this as opening the door to streamlined, targeted treatments for every individual patients – an approach that’s much in line with the Precision Medicine Initiative.  "This is the basis for precision medicine and personalized treatments," Gomperts said.

Additional source: UCLA
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
OCT 10, 2019
Cardiology
OCT 10, 2019
Parkinson's Disease is Present in the Blood
Parkinson's disease is a progressive disorder of the nervous system. Often starting with a barely noticeable tremor in one hand, the disease affects a...
OCT 14, 2019
Genetics & Genomics
OCT 14, 2019
Researchers Develop a Score to Quantify the Risk of Epilepsy
It usually takes two seizures before a person can be diagnosed with epilepsy. New work can help change that....
NOV 05, 2019
Clinical & Molecular DX
NOV 05, 2019
Meningitis and Encephalitis: Testing & Diagnosis Strategies for Effective Treatment
Meningitis is an inflammation of the membranes surrounding the brain (meninges) and spinal cord. Encephalitis, on the other hand, refers to inflammation of...
NOV 26, 2019
Immunology
NOV 26, 2019
The Immune System's Hand in Toxic Shock
While rare, toxic shock is a dangerous condition that acts fast and can be fatal. A new study identified a new target for treating toxic shock, a component...
FEB 05, 2020
Clinical & Molecular DX
FEB 05, 2020
A new CRISPR-based test for coronavirus infections
A surge in infections has caused panic surrounding the coronavirus (2019-nCoV) outbreak to reach a fever pitch. Despite being only moderately infective, 20...
MAR 25, 2020
Clinical & Molecular DX
MAR 25, 2020
A coronavirus testing kit with glow-in-the-dark Mango?
A group of Canadian researchers is responding to a desperate need for COVID-19 diagnostic kits with their fluorescent imaging technology, known as Mango. M...
Loading Comments...