JUN 13, 2018 12:56 AM PDT

Small Molecule Seeks To Treat Asthma Attacks

WRITTEN BY: Nouran Amin

For many individuals with asthma, a tiny particle almost invisible can trigger an asthmatic attack if it enters the airways of the respiratory system. Asthma is a chronic disease that is difficult to endure. Roughly, 30 million Americans experience asthmatic attacks with 3 million having the severe and therapy-resistant form of the disease. Some cases of asthma are known to be fatal.

"Despite the prevalence of asthma around the world, therapy for this condition has not significantly changed, with a few exceptions, in the last 70 to 80 years," explains Dr. David Corry at Baylor College of Medicine. "For the most part, we are still treating the symptoms of the disease, not the underlying causes. In this work we present a novel new way to target a pathway we think is at the core of this allergic condition."

Present treatments seek to cure typical asthma symptoms, particularly the constriction of the airways so breathing becomes easy for affected individuals. Treatments also include steroids to prevent inflammation which was believed to be the underlying cause of airway constriction. Dr. David Corry's laboratory examines the molecular mechanisms that drive airway constriction.

An asthma attack is triggered when environmental factors, such as allergens, have found their way through the lungs where they work to activate a chain of mechanisms that spark the disease. Allergens activate immune cells that are then recruited to the lungs where some of them end up producing immune mediators known as cytokines. In particular, the cytokines IL-4 and IL-13 are needed for asthma to happen. These cytokines activate another molecule, known as transcription factor STAT6, which drives the expression of certain genes involved in the exaggerated contraction of the airways and caused the feared shortness of breath.

Mice that are genetically engineered to lack STAT6, will lack the responses triggered by the interactions of IL-4/IL-13/STAT6 which make them resistant to asthmatic attacks. "STAT6 is at the epicenter of the immune responses that mediate asthma, so we looked for a means to block STAT6 activation," said Dr. J. Morgan Knight, post-doctoral fellow in the Corry lab. "To activate STAT6, IL-4 and IL-13 bind to their corresponding receptors on immune cells. These receptors share a critical subunit called IL4R-alpha that activates STAT6. However, additional research from our lab has shown that completely different receptors can also activate STAT6. So, we focused our efforts on developing a small-molecule that would bind to and inhibit STAT6 activity directly."

 

Corry, Knight and team worked on developing a small molecule that is capable of targeting the STAT6 transcription factor without also triggering negative side effects. "After years of work, we succeeded," said Knight. "We chemically synthesized a small molecule called PM-43I that can inhibit STAT6-dependent allergic airway disease in mice. Moreover, PM-43I reversed preexisting allergic airway disease in mice with a minimum dose of 0.25 ?g/kg. Importantly, PM-43I was efficiently cleared through the kidneys and had no long-term toxicity. We concluded that PM-43I represents the first of a class of small molecules that may be suitable for further clinical development as a therapeutic drug against asthma."

 

An advantage to the development of the small molecule, PM-43I, is it will serve as the only treatment option that does not need to be paired with steroids.

Steroids prevent inflammation as well as other immune responses. The researchers' work shows that treating asthma with PM-43I may control asthma without impairing the ability of the body to fight pathogens. "This is important because there is a higher incidence of pneumonia in people with asthma, presumably because of the steroids they take," Corry said. "Steroids drive down all the immune system, but our small molecule specifically targets the pathway that leads to asthma, uncompromising the other pathways that allow the body to fight disease. We anticipate that patients treated with our small molecule would not need steroids as our treatment alone would be able to control the asthma. Consequently, these patients' ability to fight infections would not be affected."

Source: Baylor College of Medicine. Journal of Biological Biochemistry

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
APR 13, 2020
Cancer
APR 13, 2020
The Unexpected Role of Mono in Cancer Progression
In the past, the go-to drugs have always been small molecules. These small molecules would interact with the cell and ac ...
APR 21, 2020
Neuroscience
APR 21, 2020
Considerations for Lab Managers in Choosing a Microplate Reader
In today's high-tech, digitized laboratory environments, nobody pays very much attention to the humble plastic micro ...
APR 30, 2020
Cancer
APR 30, 2020
A New microRNA for the Cancer Fighting Toolkit
MiRNAs are small snippets of genetic information that regulate gene expression thought to be able to regulate up to 60% ...
MAY 02, 2020
Cancer
MAY 02, 2020
Tracking DNA Methylation as a Prognostic Marker
In the modern age of biological research, one of the tools that have become readily available in the ever-increasing dat ...
MAY 06, 2020
Drug Discovery & Development
MAY 06, 2020
Why Doctors are Repurposing Drugs to Treat COVID-19
Creating a drug from scratch is a lengthy process. Often taking years, given the rate of infection and deadliness of COV ...
MAY 12, 2020
Immunology
MAY 12, 2020
Disabling Genes in Immune Cells Prevents Obesity
Obesity is a $1.7 trillion problem in the United States — a value almost 10% of the nation’s gross domestic ...
Loading Comments...