JUN 19, 2018 10:34 PM PDT

Triple Negative Breast Cancer: Treatment Using Innovative Drug Technology

WRITTEN BY: Nouran Amin

Researchers at Purdue University have created innovative drug technology that may seek to treat one of the most aggressive forms of breast cancer: triple negative breast cancer.

In the United States, triple negative breast cancer (TNBC) occurs in about 10-20% of diagnosed breast cancers. It is also more likely to affect younger people, African Americans, Hispanics, and/or those with a BRCA1 gene mutation.

Currently, the only treatment option for TNBC is chemotherapy. However, chemotherapy is not effective to the degree that it targets cancer cells. Additionally, chemotherapy causes unpleasant side-effects that are often debilitating. Therefore, the need for an innovative targeted therapy that will treat TNBC without adverse effects is stronger than ever.

“TNBC is a very aggressive type of breast cancer with a short survival rate due to lack of available therapeutic drugs used for treatment that will cause minimal side effects,” explains research team leader Meden Isaac-Lam and an associate professor in the Department of Chemistry and Physics at Purdue University Northwest. “There are no known recognized molecular targets for TNBC, making the design of highly specific drugs extremely challenging.”

The Isaac-Lam research team produced drug candidates that are strong at lower concentrations than traditional chemotherapy. This technology utilizes molecules that can be selectively activated by light and absorbed by cancer cells. The therapy is believed to decrease the dosage needed to administer the drug, ultimately reducing side effects and effective in treating TNBC.

“Our proposed solution is to design drugs that target vitamin receptors produced excessively in cancer cells, which compete with normal cells for the vitamins necessary for cellular growth and proliferation,” Isaac-Lam said. “Attaching vitamins on compounds that are light-activated and that are known to be taken up by tumor cells will provide a means of selectively accumulating these synthetic drug-vitamin conjugates in cancer cells more than in healthy cells.”

The technology works by injecting the selected compound into the patient where it accumulates into the cancer cells. These cancer cells are then killed when activated by light.

“This will be an alternative solution to the available therapies that are not selective to the tumor cells causing detrimental effects to the patient’s healthy cells,” Isaac-Lam said. “The technology can be an effective treatment for breast cancer patients who are not responding to the standard conventional therapy.”

Fortunately, these drug candidates that were screened for TNBT may be effective in treatments for other forms of breast cancer.

Sources: Purdue University

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
AUG 22, 2020
Drug Discovery & Development
New Class of Antibiotics Could Treat UTIs
AUG 22, 2020
New Class of Antibiotics Could Treat UTIs
At 11 million cases annually, urinary tract infections (UTIs) are the most common outpatient infections in the U.S., Sci ...
SEP 13, 2020
Drug Discovery & Development
Scientists Find Way to Reduce Inflammation from Vaccines
SEP 13, 2020
Scientists Find Way to Reduce Inflammation from Vaccines
Researchers from the University of Chicago have found a new way to reduce vaccine-related inflammation from adjuvants, a ...
SEP 30, 2020
Cancer
Chemokines Could be the Key in Controlling Glioma Stem Cells
SEP 30, 2020
Chemokines Could be the Key in Controlling Glioma Stem Cells
The transformation of a healthy cell into a cancerous one often comes with a slew of cellular signaling changes.  T ...
OCT 02, 2020
Immunology
Stop the Clot: A New Antibody Treatment for Thrombosis
OCT 02, 2020
Stop the Clot: A New Antibody Treatment for Thrombosis
Blood clotting helps stem the bleeding from a wound, suppressing blood loss and stopping pathogenic microorganisms from ...
OCT 01, 2020
Drug Discovery & Development
HPV Vaccine Protects Against Cervical Cancer, Large Study Finds
OCT 01, 2020
HPV Vaccine Protects Against Cervical Cancer, Large Study Finds
It has been known for some time that the HPV vaccine protects against human papillomavirus infection, genital warts, and ...
OCT 21, 2020
Microbiology
The First Treatment for Ebola is Approved by FDA
OCT 21, 2020
The First Treatment for Ebola is Approved by FDA
Ebola virus can pass from animals to humans, and between people. Rarely, it causes outbreaks but when it does, they can ...
Loading Comments...