DEC 26, 2018 7:56 PM PST

Compound Shrinks Tumors of Sarcoma Cells

WRITTEN BY: Nouran Amin

According to a multi-disciplinary study carried out by the University of Illinois, a compound was found to effectively shrink tumors in animal models by targeting receptor proteins on sarcoma cancer cells.

Learn more about sarcoma:

"There's a very poor prognosis with sarcomas. Sarcomas are rare tumors, but they are so heterogeneous that they're very difficult to treat," explained Dipanjan Pan, a professor of bioengineering and in the Carle Illinois College of Medicine and lead author of the study. "The receptor we targeted inside the cancer cells, the orphan nuclear receptor, is a more universal target for the varied sarcomas than markers on the surface of cells. The opportunity is huge, because this receptor is also expressed in other types of solid cancers -- melanoma or liver cancers, for example."

Specifically, the researchers targeted a protein found abundantly in individuals with sarcoma and other cancer cells but present in low concentrations in normal healthy cells—this protein is called the retinoid X receptor (RXR). Most recently, a drug class targeting RXR has been developed. However, the drug was found to be very toxic and comes with limitations. Therefore, researchers were encouraged to look for better compounds that would be most appropriate for targeting RXR in regards to safety and efficacy.

The new compound, shown in green, fits precisely into the active site within the target protein, retinoid X receptor. Image courtesy of Dipanjan Pan via University of Illinois

When the most promising compound was picked out of 20,000 likely candidates, it was synthesized and tested on tissue culture cells. After successful results, the compound was then tested on a sarcoma-pig model. The results, published in Journal of Medicinal Chemistry, shows that tumors successfully shrunk and were less likely to metastasize. No specific toxicity was sobered or measured however, there was some side effects. "We saw that the tumor was shrinking, but that doesn't mean the drug is working the way it's supposed to work," Pan said. "We wanted to make sure that the drug was actively participating in the pathway we intended, and that it wasn't just killing cells because it's toxic.

Source: University of Illinois

 

 

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
APR 15, 2020
Neuroscience
APR 15, 2020
How Magic Mushrooms Restructure the Brain
For some time now, researchers have suspected that psilocybin, the hallucinogen chemical present in ‘magic mushroo ...
APR 30, 2020
Drug Discovery & Development
APR 30, 2020
Researchers Use AI to Accelerate COVID-19 Drug Development
Researchers from the National University of Singapore (NUS) have developed an artificial intelligence platform to accele ...
MAY 07, 2020
Cancer
MAY 07, 2020
Yet Another Cancer Linked Tyrosine Kinase
In a cell, there are tens of thousands of individual components. Each component has a specific activity or role that the ...
MAY 12, 2020
Drug Discovery & Development
MAY 12, 2020
Does Herbal Drink from Madagascar Cure COVID-19?
Andry Rajoelina, the president of Madagascar, an island off the coast of Southern Africa, has made claims that his count ...
MAY 13, 2020
Drug Discovery & Development
MAY 13, 2020
FDA Fast Tracks Vaccine for COVID-19
Biopharmaceutical company, Moderna, has announced that the US Food and Drug Administration has approved its experimental ...
MAY 23, 2020
Chemistry & Physics
MAY 23, 2020
Improving the understanding of GPCRs functioning
New research reported in Current Opinion in Structural Biology combines structural and spectroscopic approaches to garne ...
Loading Comments...