MAY 18, 2019 4:44 PM PDT

How a Cancer Drug Inhibits DNA Repair in Cancer Cells

WRITTEN BY: Nouran Amin

In a study published in the journal Science Translational Medicine, combing a certain cancer drug with other agents could potentially deliver a lethal blow in cancer that uses a specific pathway to create DNA repair cells.

Learn more about DNA repair and damage:

That drug is called Cediranib and when combined with another cancer agent known as olaparib (registered as Lynparza) can be effective in a specific form of ovarian cancer.

"The use of cediranib to help stop cancer cells from repairing damage to their DNA could potentially be useful in a number of cancers that rely on the pathway the drug targets," said the study's lead investigator, Alanna Kaplan. "If we could identify the cancers that depend on this pathway, we may be able to target a number of tumors."

Cediranib inhibits vascular endothelial growth factor (VEGF) receptors that stimulate the formation of blood vessels that support tumor growth. However, it has been less beneficial than the FDA-approved Avastin--an VEGF pathway inhibitor. On the other hand, Olaparib--the first approved DNA repair drug, inhibits a DNA repair enzyme called PARP which eradicates cancer cells with DNA defects in DNA repair from mutations in two DNA repair genes--BRCA1 and BRCA2.

DNA illustration. Credit: © Kirsty Pargeter / Adobe Stock

"There is a lot of interest in the cancer field in developing DNA repair inhibitors because they will greatly help treatments, like radiotherapy and chemotherapy, that aim to destroy DNA in cancer cells," said the senior author of the study, Peter M. Glazer, M.D. "People are recognizing that manipulating DNA repair could be very advantageous to boosting the benefit of traditional cancer treatment."

However, the combination of cediranib and olaparib was effective in ovarian cancers that did not include BRCA1/BRCA2 mutations. This lead to the launch of several clinical trials that tested the drug in duo for different types of cancers, such as prostate and lung cancer.

"The goal now is to investigate how we can broaden the potential of this synthetic lethality to other cancer types," said Glazer.

Source: Yale University News

 

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
NOV 13, 2019
Drug Discovery & Development
NOV 13, 2019
The Side-Effects to A Common Blood Cancer Drug
In a study published in Scientific Reports, a popular cancer drug, known as ruxolitnib, was found to cause an increased weight gain as well as an increase ...
NOV 24, 2019
Drug Discovery & Development
NOV 24, 2019
The unlikely pain killer
Pain can be anything a sunburn, a toothache, or a leg injury to name a few. The relievers that target our pain come in many colors—one being morphine...
DEC 25, 2019
Drug Discovery & Development
DEC 25, 2019
New Drug to Make Breast Cancer Treatment More Affordable
The US Food and Drug Administration has granted accelerated approval to new breast cancer drug, trastuzumab deruxtecan. The drug’s increasing recogni...
JAN 13, 2020
Drug Discovery & Development
JAN 13, 2020
Vaccine Against Alzheimer's to Hit Clinical Trials
Currently Alzheimer’s disease is thought to affect around 50 million people around the world, with this figure doubling every year. Currently with no...
JAN 16, 2020
Cancer
JAN 16, 2020
FLASH proton therapy: faster and more effective
A new technique called FLASH proposes a new type of radiation therapy. The technique is composed of an ultra-high dose rate of radiotherapy and uses electr...
FEB 02, 2020
Microbiology
FEB 02, 2020
A Potential Treatment for MERS is Found
A coronavirus causes MERS, which currently has no treatment. This work may help change that....
Loading Comments...