MAY 23, 2019 11:29 PM PDT

Long-Lasting Worms Inspires Anti-Aging Drugs

WRITTEN BY: Nouran Amin

Researchers have recently discovered that aging in nematodes may be partially controlled and can be therapeutically reversed through multiple FDA-approved drugs. Findings of the research were published in Scientific Reports.

One such nematode, C.elegans, and the most intensively studied animals on Earth had its genome the first sequenced among multicellular organisms. They hold lifespan of 15 to 25 days allowing them to become a convenient model organism for aging studies.

Learn more about C. elegans:

"Our main concern was that aging in an extremely long-living worm might be totally different from that of normal, wild-type nematodes. In that case, the radical extension of lifespan would require complex interventions, and studies of animals with drastically slowed aging would not help us in our search for a truly effective anti-aging therapy," explains Peter Fedichev, the principal investigator of the Gero/Skoltech/MIPT group.

"This study resulted in several practical implications for aging research and the growing longevity industry. Firstly, we demonstrated that aging in nematodes is partially programmed and can be modified therapeutically. This might well hold true for other multicellular organisms, humans included. Secondly, we proposed a new method of searching life-extending compounds. The usual procedure involves laborious screening of large libraries of potential drugs. Unfortunately, even successful hits sometimes get missed by chance or due to non-optimal dosage. Our method allows for a targeted search of the compounds with the required activity, including FDA-approved drugs. The latter compounds have the advantage that they have already passed all the necessary clinical trials and can be used off-label as anti-aging drugs," said Andrei Tarkhov, Gero research scientist and a Ph.D. candidate at Skolkovo Institute of Science and Technology.

Source:

 

About the Author
  • Nouran is a scientist, educator, and life-long learner with a passion for making science more communicable. When not busy in the lab isolating blood macrophages, she enjoys writing on various STEM topics.
You May Also Like
APR 22, 2021
Drug Discovery & Development
mRNA Covid Vaccines May Protect Against New Strains and Common Cold
APR 22, 2021
mRNA Covid Vaccines May Protect Against New Strains and Common Cold
Researchers from Johns Hopkins have found that the mRNA Covid vaccines developed by Pfizer and Moderna not only work wit ...
MAY 06, 2021
Cannabis Sciences
New CBD Analog Outperforms Regular CBD for Pain Relief
MAY 06, 2021
New CBD Analog Outperforms Regular CBD for Pain Relief
Researchers from Temple University Health System have found that a novel cannabidiol (CBD) analog can reverse pain sensi ...
JUN 01, 2021
Immunology
Nanoparticles Designed to Enhance Seasonal Flu Vaccines
JUN 01, 2021
Nanoparticles Designed to Enhance Seasonal Flu Vaccines
Seasonal flu vaccines only work around 40 to 60 percent of the time, says the U.S. Centers for Disease Control and Preve ...
JUN 03, 2021
Drug Discovery & Development
Smartphone App More Effective than Traditional Treatment for Osteoarthritis
JUN 03, 2021
Smartphone App More Effective than Traditional Treatment for Osteoarthritis
  Researchers at the University of Nottingham in the UK and Joint Academy have found that a clinical evidence-based ...
JUN 24, 2021
Cell & Molecular Biology
The Curiosity About Caterpillar Venom
JUN 24, 2021
The Curiosity About Caterpillar Venom
It seems like Australia is home to some of the world's deadliest animals, like taipan snakes and box jellyfish. Even the ...
JUL 06, 2021
Immunology
New Nanotechnology Delivers RNA Drugs Only to "Bad" Immune Cells
JUL 06, 2021
New Nanotechnology Delivers RNA Drugs Only to "Bad" Immune Cells
Inflammatory conditions are linked to an overactive immune system, and resolving them therapeutically often involves cal ...
Loading Comments...