JUN 12, 2019 7:58 AM PDT

Sustainable Production of Opiate Antidotes

WRITTEN BY: Nouran Amin

According to the National Center for Health Statistics, an estimated 130 Americans die every day from an opioid overdose. The skyrocketing of opiate overdoses may be largely due to the high cost of antidotes like NARCAN®--that prevent many first responders from retrieving lifesaving antidotes when needed the most.

Now, researchers at the Donald Danforth Plant Science Center were encouraged to seek sustainable methods of producing lifesaving opiate antidotes at reduced cost. The new method involves the production of compounds using a microorganism found in waste streams and associated with the processing of opium poppy.

The essence of what is known as “green chemistry” holds the potential of creating new drugs at a reduced cost with less harmful waste—and in this case the cost of antidote drug development without the need of too much chemicals.

Learn more about green chemistry:

Details of the drug development were described in the paper "Enzyme morphinan N-demethylase for more sustainable opiate processing" and published in the journal Nature Sustainability.

"Enzymes perform reactions at efficiencies that surpass synthetic chemistry, thereby reducing the cost and impact of drug production on the environment. We work now to optimize production levels of the enzyme to a scale sufficient for industrial processes. Greener manufacturing would make a difference in people's lives," said Megan Augustin, lead author and research associate in the Kutchan lab at the Danforth Center.

Essentially, naturally occurring opiates are produced in poppy species— like morphine and the baine. However, current methods of opiate conversion to pain killers result in a reaction called N-demethylation that are based on noxious reagents that produce harmful waste.

Therefore, the study identified a unique sustainable method of opiate production that is based on enzymes rather than ‘chemicals’. These enzymes can be provided by microorganisms that can be metabolized into unique compounds in their environment.

Source: Donald Danforth Plant Science Center

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
APR 11, 2020
Cancer
APR 11, 2020
The Mice Make the Difference in CAR-T Studies
It is quite common in cancer therapies to see a drug or treatment that has been around for decades. New drugs are hard t ...
APR 15, 2020
Immunology
APR 15, 2020
Why More Men than Women Die from COVID-19
As of April 9th, over 60% of deaths from COVID-19 in New York state were men. Meanwhile, as of April 6, 82% of patients ...
APR 20, 2020
Genetics & Genomics
APR 20, 2020
Advances in Gene Therapy for Neurons
New research may aid in the development of gene therapies for diseases like Alzheimer's and Parkinson's.
APR 12, 2020
Drug Discovery & Development
APR 12, 2020
Can Spider-Venom Alleviate Pain?
Can spider venom offer pain relief? Apparently, yes! According to researchers at University of Queensland, compounds iso ...
APR 30, 2020
Drug Discovery & Development
APR 30, 2020
Shortcuts in Drug Development may Cause Long Term Damage
   
MAY 04, 2020
Cancer
MAY 04, 2020
A Retroactive Study Finds an Immunotherapy Effective as a Third-Line Therapy
Cancer is a particularly persistent disease. Many therapies are composed of one or more different treatments. These trea ...
Loading Comments...