JAN 05, 2021 3:40 PM PST

Promising Epigenetic Treatment for Depression Works After One Dose

WRITTEN BY: Annie Lennon

Researchers affiliated with the University of Sao Paulo in Brazil have used epigenetic modulators to reduce stress-induced damage to neuroplasticity, and thus resolve symptoms of depression in rats. Whereas conventional antidepressants need to be taken repeatedly before they take effect, their current interventions worked after one dosage. 

Stress is known to alter certain epigenetic markers associated with neuroplasticity in the brain. In particular, it increases DNA methylation, a chromatin remodeling process that regulates gene expression. Most current antidepressants work to reduce this process. 

For the study, the researchers decided to focus on modulating brain-derived neurotrophic factor (BDNF), a protein of the nervous system known to regulate neuronal plasticity. This comes as stress increases DNA methylation of the gene behind BDNF, which reduces its expression, and thus goes on to block the efficacy of antidepressants.

As such, the researchers hypothesized that they would be able to shortcircuit this process by using a genetic modulator to inhibit DNA methylation. In doing so, they would allow BDNF levels to return to normal, and thus produce an antidepressant effect. 

“If the antidepressant effect is indeed linked to normalization of the methylation profile, so that conventional drugs take time to work because it takes time to eliminate stress-induced alterations, we imagined that direct modulation of these epigenetic mechanisms would produce the effect rapidly.” says Samia Joca, lead author of the study. 

To test their hypothesis, the researchers tested two drugs that, while inhibit the same enzyme responsible for DNA methylation, are not chemically related. During experiments monitoring rats in two different stressful scenarios, they found both interventions produced rapid antidepressant effects. They also found that while most conventional antidepressants work with chronic use, these interventions worked rapidly and acutely. 

“It’s important to note that these drugs can’t be used to treat depression because if they reduce DNA methylation unrestrictedly, they’ll increase the expression of several genes rather than just the gene that interests us. So there will be adverse effects. The findings point not to prospects for novel antidepressants but to an interesting angle from which to develop novel treatments.” says Joca. 

 

Sources: Neuroscience NewsMolecular Neurobiology

About the Author
  • Science writer with keen interests in technology and behavioral biology. Her current focus is on the interplay between these fields to create meaningful interactions, applications and environments.
You May Also Like
NOV 23, 2020
Drug Discovery & Development
Therapeutically Active Ion-Channels
NOV 23, 2020
Therapeutically Active Ion-Channels
Therapeutically relevant ion channels have inspired researchers to look into drugs that can regulate their activity. Ion ...
DEC 27, 2020
Genetics & Genomics
Delivering DNA- & RNA-Based Therapies in a New Way
DEC 27, 2020
Delivering DNA- & RNA-Based Therapies in a New Way
Gene therapy holds tremendous promise for its potential to cure genetic diseases. We've also recently seen how critical ...
DEC 28, 2020
Cannabis Sciences
Does Cannabis Affect Stress in Men and Women Differently?
DEC 28, 2020
Does Cannabis Affect Stress in Men and Women Differently?
Researchers from Washington State University have found that cannabis may blunt the stress response differently in males ...
DEC 28, 2020
Drug Discovery & Development
Anti-Diarrhea Drug Kills Aggressive Brain Cancer Cells
DEC 28, 2020
Anti-Diarrhea Drug Kills Aggressive Brain Cancer Cells
Glioblastoma is a very aggressive and lethal form of brain cancer that responds poorly to chemotherapy in children and a ...
DEC 30, 2020
Drug Discovery & Development
Llama Antibody Prevents Infection by COVID-19
DEC 30, 2020
Llama Antibody Prevents Infection by COVID-19
There's more to llamas than being livestock and hilarious companion animals. They also harbor an immune system capab ...
JAN 19, 2021
Immunology
Food Allergies Be Gone: Nanoparticles Call for an Immune Ceasefire
JAN 19, 2021
Food Allergies Be Gone: Nanoparticles Call for an Immune Ceasefire
Milk, eggs, peanuts, tree nuts, wheat, soy, fish, and shellfish—these foods are among the most unwanted list for t ...
Loading Comments...