JUN 08, 2018 04:53 PM PDT

Visualizing Gene Activity in Single Cells

WRITTEN BY: Carmen Leitch

With labeling tools that add fluorescent tags, researchers could once see about four or five genes in a cell. Updates to that technique by scientists at Caltech will now enable the visualization of over 10,000 genes in one cell at the same time. This new method has been called intron seqFISH (sequential fluorescence in situ hybridization) and has been reported in the journal Cell.

Intron seqFISH enables 3D reconstruction of nascent transcription active sites (colored spots) in an embryonic stem cell (blue), with individual chromosomes occupying distinct spatial territories (colored differently). Here, 982 transcription active sites, corresponding to individual genes, are present in this cell. / Credit: Cai laboratory / Cell

Long Cai, research professor in biology and an affiliated faculty member of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech led this study, which utilized introns. When genes in DNA are active, they are transcribed into RNA, an intermediary molecule the cell usually uses to make proteins. Before being made into protein, the RNA has to be modified; one edit is the removal of introns, which are non-coding regions of DNA that sit in between exons, the coding portions of genes. The investigators labeled introns because they are only around when transcription first starts. Thus, they could get a snapshot of gene activity at one moment.

In the intron seqFISH method, every intron gets a fluorescent label, which can be seen under a microscope. That indicates which genes are active and can also show how high their expression level is. In all, the researchers barcoded and visualized 10,421 genes at one time.

Previous barcoding tools have used RNA, which can show how the activity of genes changes over time. The intron labels highlighted the newly transcribed genes, the so-called nascent transcriptome. When they used the tool, the investigators were surprised by what they found; they saw that genes are transcribed on a short, oscillating course, with many genes bursting on and off over two hours.

These oscillations haven’t been observed before because of technical limitations. Intron seqFISH allowed the scientists to actually see what they measured in a single cell, ensuring it was not an artifact. Introns also don’t hang out for as long as mRNA does, so it’s easier to see them coming and going.

Introns tend to stick around the gene, so the labels also allowed the investigators to see the locations of genes in chromosomes, where the entire genome is compacted in the nucleus of cells. They saw that genes encoding for protein aren’t buried within the chromosome but are instead near the surface.

"This technique can be applied to any tissue," said Cai. "Intron seqFISH can help identify cell types and also what the cells are going to do, in addition to giving us a look at the chromosome structure in the same cells."

Learn more about the fluorescent in situ hybridization technique from the video.

Sources: AAAS/Eurekalert! Via Caltech, Cell

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 19, 2018
Genetics & Genomics
NOV 19, 2018
Revealing an Unexpected Role for RNA in DNA Repair
When both strands of DNA break, it must be repaired or the cell will die....
NOV 24, 2018
NOV 24, 2018
More Bacteria Found on the ISS, Researchers Stress Continued Monitoring
A check of the International Space Station (ISS) has revealed several strains of Enterobacter microbes....
DEC 03, 2018
DEC 03, 2018
Genes Involved In Dementia Identified
Genetic factors have also been recognized as a critical contributor for dementia and identifying these genes will eventually allow for gene-specific therapeutics to be developed. Although sci...
DEC 15, 2018
Genetics & Genomics
DEC 15, 2018
Neanderthal Genes Provide Insight Into Human Brain Evolution
Neanderthal heads are almost football-shaped, while modern humans have much rounder brains and skulls....
DEC 20, 2018
Cell & Molecular Biology
DEC 20, 2018
Identifying Molecular Markers of Aging
As people get older, some remain healthy while others begin to get chronically ill....
JAN 15, 2019
JAN 15, 2019
Decipher the Clues with CRISPR
Scientists have created the first retroviral CRISPR-Cas9 gene editing library to explore the regulation of mouse T cells, which are key cells in the immune system. Researchers mapped the most...
Loading Comments...