JUN 08, 2018 7:11 PM PDT

Staph Bacteria can Sustain Infection by Eating Bone

WRITTEN BY: Carmen Leitch

The bacterium Staphylococcus aureus can cause illness, often referred to as Staph infections; when those infections get into bone, they become very serious. Researchers at Vanderbilt University Medical Center have now identified the mechanisms that these microbes use so they can live in bone tissue. Presenting their findings at the annual meeting of the American Society for Microbiology, ASM Microbe, this study showed how pathogens like S. aureus can use bone tissue for its nutritional needs.

S. aureus / Credit: Janice Haney Carr, Jeff Hageman, M.H.S, USCDCP/ Pixnio

S. aureus can be a harmless bacterium that exists in our airways and skin, but there are also strains that can produce toxic compounds. It's also dangerous if the microbe moves further into the body. S. aureus can infect bone (a condition called osteomyelitis), even though bone is a tissue that cycles through cell growth and destruction, and is an environment that’s low in oxygen. The researchers wanted to know more; they knew of many cases in which the bacterium took up residence there.

"For this reason, many patients with bone infection require surgeries to remove infected or damaged bone," said the lead author of the work, Jim Cassat, M.D., Ph.D., Associate Director, Vanderbilt Institute for Infection, Immunology, and Inflammation. ”Our lab studies osteomyelitis with the goal of defining how bacterial pathogens survive in such a dynamic environment, how bone cells sense and respond to bacterial pathogens, and how immune responses crosstalk with bone turnover."

The researchers tested mutated bacterial strains in which various pathways had been rendered inactive. Then those strains were given only bone to survive. The test identified the pathways that were essential for the microbe's survival in bone tissue.

"We found that S. aureus needs to synthesize certain amino acids itself, rather than relying on the host nutrients," revealed Cassat. 

There are thirteen critical metabolites that life needs to build molecules and keep cells fueled and alive. The investigators looked at how S. aureus gets the material from its host to make and use them in its cellular pathways. "Because these particular amino acid biosynthesis pathways are found only in microbes and plants, they might be particularly attractive targets for the development of new antimicrobial compounds," said Dr. Cassat. 

This work sheds light on a common bacterial pathogen, one which can cause infection and destruction in many different tissues of the body. That tissue destruction interferes with therapeutics, which then can’t reach the site of infection.

You can learn more about the illness caused by S. aureus from the video.

Sources: AAAS/Eurekalert! Via ASM, Mayo Clinic

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 01, 2022
Immunology
This Day in Science History - Edward Jenner & The Smallpox Vaccine
JUL 01, 2022
This Day in Science History - Edward Jenner & The Smallpox Vaccine
Smallpox is caused by the variola virus, which can be spread though infectious droplets that are exhaled as people talk, ...
JUL 11, 2022
Immunology
Inflammation in the Gut Can Lead to Skin Disorders
JUL 11, 2022
Inflammation in the Gut Can Lead to Skin Disorders
New research has suggested that inflammation in the gut can reach far beyond the digestive system to affect other areas, ...
JUL 12, 2022
Microbiology
New Findings May Lead to Fibromyalgia Diagnostics & Treatments
JUL 12, 2022
New Findings May Lead to Fibromyalgia Diagnostics & Treatments
Many fibromyalgia patients spent years waiting for clinicians to acknowledge their condition, and researchers have been ...
JUL 15, 2022
Coronavirus
The "Worst Version" of COVID-19 is Here
JUL 15, 2022
The "Worst Version" of COVID-19 is Here
Variants of SARS-CoV-2, the virus that causes COVID-19, have been continuously emerging since the start of the pandemic. ...
AUG 09, 2022
Microbiology
An Inhaled COVID-19 Treatment Halts Viral Replication
AUG 09, 2022
An Inhaled COVID-19 Treatment Halts Viral Replication
This new approach could also be effective against many different types of RNA viruses.
SEP 15, 2022
Cell & Molecular Biology
A Totally Synthetic Microbiome is Designed & Built
SEP 15, 2022
A Totally Synthetic Microbiome is Designed & Built
In recent years, a mountain of evidence has revealed the significance of the human gut microbiome, a community of bacter ...
Loading Comments...