JUN 08, 2018 2:17 PM PDT

Top Quark and the Higgs Make a Great Couple

WRITTEN BY: Daniel Duan

Artistic rendition of the Brout-Englert-Higgs Field (Daniel Dominguez/CERN)

The Large Hadron Collider (LHC) is not just the biggest particle accelerator on our planet. It also produces smashing headlines for the news in science. On June 4, scientists working at the two of the major experiments there are conducted using the LHC, CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC Apparatus) announced that they have observed the coupled production of the Higgs bosons and the top quark, through approximately 10^15 events of the proton-proton collision.

Back in 2013, the landmark discovery of the Higgs boson at the LHC took the world by storm. The confirmed existence of these fundamental particles was one of the most important validations of the Standard Model of physics. The Higgs plays a unique role in this theoritical framework: it interact with all other elementary particles through the so-called Brout-Englert-Higgs Field, and this ubiquitous interaction gives the particles their masses. In another word, the mass of any particle is the solely determined by their relation with the Higgs. The stronger the interaction, the more massive a particle appears.

But a few critical questions remained unanswered. For example, how does the Higgs, the only particle that has no quantum spin, interact with other particles? The current study is among many experiments that reveals the behavior of the Higgs. It is the very first observation of the direct interaction between the Higgs and the top quark.

Quarks are 1⁄2 spin particles. They belong to the fermion family of particles (an electron is a fermion, for instance), unlike the bosons (such as a photon) which are the physical manifestation of forces. Quarks come in many “flavors”: up, down, charm, strange, top and bottom. Among them, up, charm and top quarks are electrically positive, while the other three are negatively charged; on up and down quarks are known stable quarks, that’s why they make up the baryons like protons and neutrons. The rest have only been observed in particle-smashing experiments.

What is special about the top quark, first discovered in the Fermi Lab in 1995, is that it’s the heaviest elementary particle known to physicists. It is 75,000 times heavier than an up quark and almost as heavy as a Tungsten nucleus, even though it shares many other qualities with an up quark. Scientists have long suspected an ultra-strong interaction between the top quark and the Higgs, given the latter dictates the masses of all particles.  

In a 2014 study, researchers at the CMS experiment found the evidence that Higgs boson can decay into bottom quarks. The new study matched well with theoretical predictions, Higgs bosons can be produced simultaneously with top quarks even though the odds of the co-production event is quite rare.

“Higgs boson production is rare – but Higgs production with top quarks is rarest of them all, amounting to only about 1 percent of the Higgs boson events produced at the LHC,” Chris Neu, a physicist from the University of Virginia and a participant of the study said in a press release.

The results were published in the journal Physical Review Letters.

Scientists from ATLAS, CMS and the CERN theory department explain the significance of today's results (CERN)

Source: CERN/ZME Science

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
SEP 07, 2021
Earth & The Environment
The Future of Flooding
SEP 07, 2021
The Future of Flooding
In the wake of recent flooding on the east coast as a result of Hurricane Ida, many people are wondering what the future ...
SEP 10, 2021
Space & Astronomy
The Future (and Ethics) of Giant Telescopes
SEP 10, 2021
The Future (and Ethics) of Giant Telescopes
The fate of giant telescopes hangs in the balance as this decade comes to an end.
OCT 13, 2021
Space & Astronomy
NASA Plans to Bring Mars Rocks Back to Earth
OCT 13, 2021
NASA Plans to Bring Mars Rocks Back to Earth
In continuing the time-honored tradition of celestial rock collecting, NASA’s Perseverance rover has collected a s ...
OCT 28, 2021
Health & Medicine
Smart Bandage Measures Moisture Level of Healing Wounds
OCT 28, 2021
Smart Bandage Measures Moisture Level of Healing Wounds
A common problem in wound care is determining what’s below the surface of the bandage. Once a dressing is applied, ...
OCT 31, 2021
Space & Astronomy
Researchers Create & Sustain Otherworldly 'Superionic' Ice
OCT 31, 2021
Researchers Create & Sustain Otherworldly 'Superionic' Ice
Water can assume an astonishing array of conformations. It can be a liquid, vapor, or different kinds of solids. Scienti ...
NOV 04, 2021
Chemistry & Physics
The Future of Data Storage: Fluorescent Molecules
NOV 04, 2021
The Future of Data Storage: Fluorescent Molecules
There is a data storage problem. Not every piece of information can be stored in the cloud (aka: on the internet); some ...
Loading Comments...