JUN 19, 2018 4:18 PM PDT

New, Non-toxic Technique to Synthesize DNA

WRITTEN BY: Carmen Leitch

Researchers have figured out a way to synthesize DNA without toxic chemicals, and their approach is easy, fast and accurate. Scientists at the University of California, Berkeley, and Lawrence Berkeley National Laboratory say their method can make DNA strands that are ten times longer than what can now be created in labs. Their technique, which could be adapted for a device that is comparable to a 3D printer, might be a standard part of research labs one day.

"If you're a mechanical engineer, it's really nice to have a 3D printer in your shop that can print out a part overnight so you can test it the next morning. If you're a researcher or bioengineer and you have an instrument that streamlines DNA synthesis, a 'DNA printer,' you can test your ideas faster and try out more new ideas. I think it will lead to a lot of innovation," explained UC Berkeley graduate student Dan Arlow. 

Arlow worked with visiting graduate student Sebastian Palluk of the Technische Universität Darmstadt in Germany to report their findings in the July issue of Nature Biotechnology.

"I personally think Dan and Sebastian's new method could revolutionize how we make DNA," said Jay Keasling, a UC Berkeley professor of chemical and biomolecular engineering, senior faculty scientist at Berkeley Lab and chief executive officer of the Department of Energy's Joint BioEnergy Institute in Emeryville, California, where the research was conducted.

Keasling’s lab members are experts at adding genes to microorganisms like yeast or bacteria so that they will manufacture stuff like drugs or fuels. This work can help them accelerate the pace of their work.

"We believe that increased access to DNA constructs will speed up the development of new cures for diseases and simplify the production of new medicines," Palluk said.

The current laboratory tools used to synthesize DNA have technical limitations, and they are old. Longer strands of DNA often have to be made by stitching small pieces together, which is labor-intensive. Some companies can make lengthy strands, but they are costly and take time. For synthetic biology research, having to use such a service for every gene that is being tested is not realistic.

"As a student in Germany, I was part of an international synthetic biology competition, iGEM, where we tried to get E. coli bacteria to degrade plastic waste. But I soon realized that most of the research time was spent just getting all the DNA together, not doing the experiments to see if the engineered cells could break down the plastic. This really motivated me to look into the DNA synthesis process," Palluk explained.

UC Berkeley and Berkeley Lab researchers have tweaked a natural human enzyme to create a process that can lengthen oligonucleotide chains repetitively. Tests show the technique has promise to produce more accurate and thus longer chains, faster, cheaper and without toxic waste. / Credit: Marilyn Chung, Berkeley Lab

The researchers use a special molecule for their technique. Cells usually use a polymerase to copy DNA from the existing template, but there is a unique enzyme that is able to add all of the four nucleotide bases to a strand of DNA, called deoxynucleotidyl transferase (TdT), which is naturally used by the immune system. TdT works quickly too, extending strands by about 200 bases every minute, said Palluk.

"We have come up with a novel way to synthesize DNA that harnesses the machinery that nature itself uses to make DNA," Palluk said. "This approach is promising because enzymes have evolved for millions of years to perform this exact chemistry."

While other research groups have attempted to use this enzyme for DNA synthesis, it’s an unruly molecule that has proven difficult to harness. 

Arlow had a new idea; a special molecule was tethered to TdT to get it under control. After they tested their new technique, the researchers found that they could synthesize a molecule that was one thousand bases long, with 99.9% fidelity.

“By directly synthesizing longer DNA molecules, the need to stitch oligonucleotides together and the limitations arising from this tedious process could be reduced. Our dream is to directly synthesize gene-length sequences and get them to researchers within few days,” Palluk said.

"Our hope is that the technology will make it easier for bioengineers to more quickly figure out how to biomanufacture useful products, which could lead to more sustainable processes for producing the things that we all depend on in the world, including clothing, fuel, and food, in a way that requires less petroleum," Arlow added.

Sources: AAAS/Eurekalert! via University of California, Berkeley, Nature Biotechnology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 03, 2020
Genetics & Genomics
FEB 03, 2020
Advances in Genetics From the GenomeAsia 100K Project
Scientists are taking note of the lack of diversity in genetics, and some are trying to fix the problem, which affects everyone....
FEB 05, 2020
Clinical & Molecular DX
FEB 05, 2020
A new CRISPR-based test for coronavirus infections
A surge in infections has caused panic surrounding the coronavirus (2019-nCoV) outbreak to reach a fever pitch. Despite being only moderately infective, 20...
FEB 25, 2020
Genetics & Genomics
FEB 25, 2020
Improving Gene Therapy With Plant-Based Relatives of Cholesterol
Cholesterol analogs give nanoparticles a shape that helps them get where they need to go....
MAR 02, 2020
Genetics & Genomics
MAR 02, 2020
DNA Replication Discovery May Lead to New Cancer Treatments
Researchers have learned more about DNA replication during cell division, and their insights may help create new types of cancer therapeutics...
MAR 23, 2020
Genetics & Genomics
MAR 23, 2020
Diagnosing Cancer by Looking for Microbial DNA in the Blood
Liquid biopsies aim to diagnose a disease with only a bit of biological fluid, usually blood....
MAR 25, 2020
Technology
MAR 25, 2020
What is eDNA?
What exactly is eDNA? It is environmental DNA that has underwent the next-generation sequencing and that has been ‘barcoded’ in a way that can ...
Loading Comments...