SEP 15, 2018 11:55 AM PDT

Data-based Health Management Tool for Aortic Aneurysm

WRITTEN BY: Carmen Leitch

Mistakes happen, even in the genome. Sometimes one of those errors can lead to a chronic illness that a person deals with throughout their lifetime. In many other cases, however, the cause of a disease is far more complex. Now that we know more about the human genome, scientists are looking for ways to identify people who are at risk for getting complex disorders that involve errors in many different genes. Now, researchers at Stanford have used artificial intelligence to create a health management tool they called  HEAL (hierarchical estimate from agnostic learning), for predicting the risk of developing cardiovascular disease from a person's genome.


In this work, which was reported in Cell and is outlined in the video, a massive amount of genetic and health record data was assessed in order to create the tool; it accurately diagnosed abdominal aortic aneurysm (AAA) in 300 patients. AAA has been blamed on a combination of genes and environmental factors and is a leading cause of death in western nations. 

The HEAL tool could be utilized for other diseases as well, suggested the authors. "For example, we know that smoking has a tremendous influence on AAA development," explained co-author Philip S. Tsao, professor of medicine at Stanford University School of Medicine. "If you knew you had a genetic predilection for AAA, you would strongly be advised not to pick up a smoking habit."

Tsao said that other disorders like autism, schizophrenia, diseases of aging, and other cardiovascular diseases might one day be prevented, diagnosed or treated with HEAL. "Our study presents a new framework for disease genome analysis," he noted.

The combined influence of genetics and lifestyle usually predicts disease outcomes, and that can make it difficult to anticipate individual risk or make an early diagnosis for many diseases, said Michael Snyder, study co-author and director of genomics and personalized medicine at Stanford. HEAL's model sets a genomic baseline for a disease and also provides guidelines.

This graphical abstract illustrates how a machine-learning approach integrating personal genomes and electronic health records can predict clinical outcomes associated with abdominal aortic aneurysm and can model the effectiveness of adjusting personal lifestyles based on a given individual's genome. / Credit: Li et al./Cell

HEAL may also free patients from the inconveniences of multiple visits to the doctor to have a discussion. "In the long run, the patient would not visit the office at all unless they need to," Snyder said. "They could mail in their saliva sample, get back their genome sequence, and get return of results through video teleconference."

The tool can create a risk score that would come with lifestyle and treatment recommendations. The risk scores don’t mean a person is definitely getting a disease, warned Snyder. "We need to educate both the physician and patient about that," he added.

Machine learning combined physiological, lifestyle and genome data from 313 AAA patients and 16 healthy controls. The team identified 60 genes that are involved in AAA in some way. They followed up on those genes in tissue and a mouse model.

"These 60 genes form the basis for a risk model for the disease," Snyder said. "It is now possible to determine a person's risk for AAA right from their genome sequence. This is important because the disease is irreversible, and most people discover they have AAA when their aorta bursts, which is usually lethal."

While knowing the details of our genome could provide huge benefits, it may also come with privacy risks. "The genome data belongs to the person and it is up to them to decide how to share it," Snyder added. "If placed in a medical database, it should be secure."

Our genome can indicate the diseases we're at risk for, and how our habits will influence that risk. / Image credit: Adapted from Pixabay


Sources: AAAS/Eurekalert! via Cell Press, Cell

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 23, 2020
Cardiology
Gaining Insight Into a Mysterious Network of Fibers in the Heart
AUG 23, 2020
Gaining Insight Into a Mysterious Network of Fibers in the Heart
Leonardo da Vinci knew about a mesh, fibrous network surrounding the heart, and after hundreds of years, scientists are ...
AUG 30, 2020
Genetics & Genomics
Brown Fat Transplants Could Reduce Metabolic Disease
AUG 30, 2020
Brown Fat Transplants Could Reduce Metabolic Disease
The Centers for Disease Control and Prevention (CDC) estimates that in 2018, obesity impacted about 42% of American adul ...
SEP 24, 2020
Cardiology
Analyzing Genetic Mutations in Pulmonary Arterial Hypertension
SEP 24, 2020
Analyzing Genetic Mutations in Pulmonary Arterial Hypertension
With the advancement of genomics and genome sequencing, it has become possible for researchers to study diseases down to ...
SEP 22, 2020
Genetics & Genomics
Friedreich's Ataxia Successfully Treated in a Mouse Model
SEP 22, 2020
Friedreich's Ataxia Successfully Treated in a Mouse Model
Friedreich's ataxia causes degeneration in the peripheral nervous system, and movement is progressively impaired over ti ...
OCT 20, 2020
Genetics & Genomics
The Gene Behind the Glow of the Sea Pickle is ID'ed
OCT 20, 2020
The Gene Behind the Glow of the Sea Pickle is ID'ed
In this photo by OceanX, researchers off the coast of Brazil collected Pyrosoma atlanticum specimens with a special robo ...
NOV 23, 2020
Microbiology
Drug Resistance in Tuberculosis Involves a Unique Mechanism
NOV 23, 2020
Drug Resistance in Tuberculosis Involves a Unique Mechanism
The pathogenic bacterium that causes tuberculosis, Mycobacterium tuberculosis, does not multiply quickly, so researchers ...
Loading Comments...