APR 25, 2019 7:08 PM PDT

Using Wild Plant Traits to Reduce Pesticide Use

WRITTEN BY: Carmen Leitch

Pesticides are a part of agriculture, and while they are important to crop production, some can be detrimental to human health and the environment. Scientists at Michigan State University may have found one way to make a modest reduction in pesticide use. They identified a gene in wild tomatoes that might be incorporated into the modern crop, which helps repel insects. The findings have been reported in Science Advances.

Dan Lybrand and Bryan Leong, MSU graduate students and study co-authors, examine glandular trichomes on the Solanaceae plant's leaf surface. / Credit: Michigan State University

“We identified a gene that exists in this wild plant, but not in cultivated tomatoes,” explained Rob Last, MSU Barnett Rosenberg Professor of plant biochemistry.” The gene identified in this work results in the production of a sticky molecule on the hairs of a wild tomato plant found in the Atacama Desert. The plant, Solanum pennellii, lives in one of the driest places on earth, and the sticky stuff on their hairs help keep insects away, helping the plant to survive.

“The invertase-like enzyme creates insecticidal compounds not found in the garden-variety tomato. This defensive trait could be bred into modern plants,” added Last. Plant breeders have taken traits like stickiness out of plants, noted Last, so they don’t make as many of those sticky chemicals.

"We want to make our current tomatoes adapt to stress like this wild tomato, but we can only do that by understanding the traits that make them resistant," said the co-lead author of the work, graduate student Bryan Leong. "We are using evolution to teach us how to be better breeders and biologists. For example, how can we increase crop yield by creating a pest-resistant plant and eliminate the need to spray fields with insecticides?"

Gene editing tools like CRISPR enabled the researchers to learn more about the characteristics of the wild plant. They identified an enzyme that was found only in cells on the tips of the plant’s sticky hairs. This molecule is like an invertase, enzymes that are involved in development and growth in plants. This enzyme can aid in the synthesis of insecticidal compounds in the wild tomato.

"It is a race over evolutionary time between the consumed and the consumers," said Leong. "Insects benefit by eating the plants. Yet, evolution favors plants that make more seeds and pass on their genes to another generation. We hope to take the defensive lessons plants already learned and apply them to existing crops."

This discovery is a step toward understanding the natural insect resistance of Solanum pennellii plants. It will help us learn more about how the wild tomato got that ability, and how we might be able to use it in tomato crops. 

"Plants are amazing biochemical factories that make many unusual compounds with protective, medicinal and economically important properties," said Cliff Weil, a program director at the National Science Foundation. "In this study, the authors found that a common enzyme has been repurposed for forming such compounds, giving us important insight into how life is able to bend existing tools for novel uses."

CRISPR is expected to change agriculture. Several plants have already been altered using the tool, including tomatoes (described in the video above). One scientist that helped create the technology, Jennifer Doudna, has commented that CRISPR foods will probably reach shelves in about five years, as noted in the following video.

Sources: AAAS/Eurekalert! via Michigan State University, Science Advances

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 07, 2021
Genetics & Genomics
Insight Into a Disease-Related Protein in the Brain
FEB 07, 2021
Insight Into a Disease-Related Protein in the Brain
A protein called Gαo is found at high levels in the brain. Mutations in the gene that encodes Gαo cause dysfunctions in ...
FEB 27, 2021
Cell & Molecular Biology
It's Now Possible to Measure tRNA Levels in Cells
FEB 27, 2021
It's Now Possible to Measure tRNA Levels in Cells
There are different kinds of ribonucleic acids that play essential roles in many aspects of molecular biology, including ...
MAR 10, 2021
Genetics & Genomics
As Diphtheria Cases Rise & More Become Drug Resistant, It May Become a Threat
MAR 10, 2021
As Diphtheria Cases Rise & More Become Drug Resistant, It May Become a Threat
Diphtheria was once a leading cause of death for children; immunization programs eventually changed that for most countr ...
APR 18, 2021
Cell & Molecular Biology
Controlling the Epigenome with CRISPRoff & CRISPRon
APR 18, 2021
Controlling the Epigenome with CRISPRoff & CRISPRon
Some parts of the genome are simple; many genes encode for proteins, and if there is an error in one of those protein-co ...
APR 19, 2021
Cell & Molecular Biology
Insight Into the Molecular Basis of Rheumatoid Arthritis
APR 19, 2021
Insight Into the Molecular Basis of Rheumatoid Arthritis
New research has shown how variants in an immune gene can lead to a high risk of developing the autoimmune disorder rheu ...
APR 27, 2021
Genetics & Genomics
A Genetic Path Forward For Endangered Sumatran Rhinos
APR 27, 2021
A Genetic Path Forward For Endangered Sumatran Rhinos
There are fewer than 100 Sumatran rhinoceroses remaining in the world, making this animal one of the world's most endang ...
Loading Comments...