JUN 24, 2019 09:10 PM PDT

Chromosomes Exist in a Liquid-Solid Transistion State

WRITTEN BY: Amanda Mikyska

Physicists and Molecular biologists at the University of California San Diego came together to study how distant regions of lymphocyte genes recombine.  Scientists investigated how the variable region (V), diversity region (D), and joining region (J) of the lymphocyte DNA manage to maintain chromosomal organization and the flexibility to recombine.  Lymphocyte cells degrade foreign antigens and must be genetically diverse because each lymphocyte cell is genetically designed to target one specific antigen.     

The group used live mammalian B-lymphocyte cells to observe and analyze the motion of the DNA inside and to study how that motion affects antibody production.  Local motion data showed that the V, D, and J regions stayed cemented in place on the chromosome, but DNA within the regions reached out to recombine with faraway genes.  This reach is allowed by bridges, characteristic of a gel-like matter.  The group concludes that the DNA enters a transition state of matter between solid and liquid for recombination.  The gel transition state is flexible enough to allow the DNA to reach a massive library of genes and ensure genetic adaptability.  However, the gel is stable and keep genes in a designated place on the chromosome.  Stability of chromosomal organization ensures that when a B-lymphocyte receptor identifies an antigen, genes coding for more of that lymphocyte can be easily retrieved and transcribed.  

Chromosomal organization dictates many things, including the frequency of gene transcription, which genes interact with each other, and cell fate.    Understanding the chromosomal organization and mechanisms of the V, D, and J regions is complicated because mammals have many regions of each type.  This study contributes detail to a mechanistic understanding of B-lymphocyte genomics.  

 

Sources: Nature, ScienceDaily, Image

 

About the Author
  • Amanda graduated for the University of Massachusetts Boston with a degree in Biology. After working in research on creating biochemicals from genetically engineered yeast, she started freelance science writing while traveling the world. She writes about the latest research in Neuroscience, Genetics & Genomics, and Immunology. Interested in working on solutions for food/water security, sustainable fuel, and sustainable farming. Amanda is an avid skier, podcast listener, and has run two triathlons.
You May Also Like
JAN 19, 2020
Genetics & Genomics
JAN 19, 2020
Disruptions in Mitochondrial Quality Control Can Cause Heart Disease
Researchers have learned why mutations in the ANT gene lead to heart problems....
JAN 19, 2020
Cell & Molecular Biology
JAN 19, 2020
How Nature Creates a Multitude of Leaf Shapes
Different plants exhibit leaves with very diverse shapes, and now scientists know how nature does it....
JAN 19, 2020
Genetics & Genomics
JAN 19, 2020
Fertility Treatments May Cause Epigenetic Disorders
Epigenetic diseases are still relatively rare, but when women use fertility treatments, the risk of epigenetic disease in their children rises....
JAN 19, 2020
Neuroscience
JAN 19, 2020
ADHD and Autism Share the Same Genes
In the US, 1 in every 59 children has autism, with 1 in every 20 having ADHD. Now, researchers from Denmark’s national psychiatric project, iPSYCH, h...
JAN 19, 2020
Genetics & Genomics
JAN 19, 2020
Learning More About How Gene Variants Impact Cystic Fibrosis
Cystic fibrosis is caused by a genetic mutation, but small changes other genes appear to influence the severity of the disease....
JAN 19, 2020
Genetics & Genomics
JAN 19, 2020
Genetic Mutations Carried Only in Sperm May Affect a Child's Risk of Autism
Some genetic factors that contribute to ASD may involve mutations that are present only in a father's sperm....
Loading Comments...