JUN 24, 2019 9:10 PM PDT

Chromosomes Exist in a Liquid-Solid Transistion State

WRITTEN BY: Amanda Mikyska

Physicists and Molecular biologists at the University of California San Diego came together to study how distant regions of lymphocyte genes recombine.  Scientists investigated how the variable region (V), diversity region (D), and joining region (J) of the lymphocyte DNA manage to maintain chromosomal organization and the flexibility to recombine.  Lymphocyte cells degrade foreign antigens and must be genetically diverse because each lymphocyte cell is genetically designed to target one specific antigen.     

The group used live mammalian B-lymphocyte cells to observe and analyze the motion of the DNA inside and to study how that motion affects antibody production.  Local motion data showed that the V, D, and J regions stayed cemented in place on the chromosome, but DNA within the regions reached out to recombine with faraway genes.  This reach is allowed by bridges, characteristic of a gel-like matter.  The group concludes that the DNA enters a transition state of matter between solid and liquid for recombination.  The gel transition state is flexible enough to allow the DNA to reach a massive library of genes and ensure genetic adaptability.  However, the gel is stable and keep genes in a designated place on the chromosome.  Stability of chromosomal organization ensures that when a B-lymphocyte receptor identifies an antigen, genes coding for more of that lymphocyte can be easily retrieved and transcribed.  

Chromosomal organization dictates many things, including the frequency of gene transcription, which genes interact with each other, and cell fate.    Understanding the chromosomal organization and mechanisms of the V, D, and J regions is complicated because mammals have many regions of each type.  This study contributes detail to a mechanistic understanding of B-lymphocyte genomics.  

 

Sources: Nature, ScienceDaily, Image

 

About the Author
  • Amanda graduated from the University of Massachusetts Boston with a degree in Biology. After working in research on creating biochemicals from genetically engineered yeast, she started freelance science writing while traveling the world. Now, Amanda is a Lab Manager and Research Assistant at the the University of Central Florida, studying the molecular phylogeny of parasitic wasps. She writes about the latest research in Neuroscience, Genetics & Genomics, and Immunology. Interested in working on solutions for food/water security, sustainable fuel, and sustainable farming. Amanda is an avid skier, podcast listener, and has run two triathlons.
You May Also Like
FEB 27, 2020
Cell & Molecular Biology
FEB 27, 2020
Caloric Restriction Changes Gene Expression, Reduces Inflammation
New research has added to the evidence that suggests that dietary restriction has health benefits.
MAR 04, 2020
Cell & Molecular Biology
MAR 04, 2020
CRISPR Used Inside of a Patient For the First Time
In a first, scientists have used the CRISPR gene-editing tool inside of a person's body to treat a serious eye disorder.
MAR 23, 2020
Genetics & Genomics
MAR 23, 2020
Diagnosing Cancer by Looking for Microbial DNA in the Blood
Liquid biopsies aim to diagnose a disease with only a bit of biological fluid, usually blood.
APR 20, 2020
Genetics & Genomics
APR 20, 2020
Advances in Gene Therapy for Neurons
New research may aid in the development of gene therapies for diseases like Alzheimer's and Parkinson's.
JUN 02, 2020
Genetics & Genomics
JUN 02, 2020
Sea Snake Vision Has Been Evolving for Millions of Years
New research has learned more about how and when sea snakes gained color vision.
JUN 01, 2020
Cancer
JUN 01, 2020
A New RNA in Fine-Tuned Signal Regulation
In a healthy cell, many complex networks work to make sure everything runs as it should. Some of these networks function ...
Loading Comments...