MAY 17, 2020 8:16 AM PDT

How Non-Coding Genomic Regions Influence Autoimmune Disease

WRITTEN BY: Carmen Leitch

Genes code for proteins, which are the cornerstone of many biological processes. The genome holds the instructions for making them in protein-coding genes and controls their activity with regulatory regions. There's also a massive amount of sequence that does not code for protein and has no readily apparent function. Researchers have been seeking to learn more about these 'dark' regions of the genome that had once been dismissed as 'junk.' New research has suggested that susceptibility to complex autoimmune and allergic disorders may lie in some of these regions. The findings, which have been reported in Nature, could help open new therapeutic avenues for these diseases.

Genome-wide association studies have enabled researchers to learn more about how small differences in the genome can contribute to a person's risk of various complex diseases (explained in the video at the end of the article). Susceptibility to many autoimmune diseases has been traced to a region of chromosome 11, some of which do not code for proteins. We don't really know how to manipulate these non-coding genomic regions with drugs that often target proteins in some way. We do know that many of these risk factors are in genetic regions that are characterized as enhancers. While they don't code for proteins, enhancers can help regulate gene expression - the production of proteins.

Scientists found an enhancer that the immune system needs in order for regulatory T cells to mediate the immune response and maintain balance.

"The immune system needs a way of preventing reactions to harmless self- and foreign substances and Treg cells play a vital role in this. They're also crucial in maintaining balance in the immune system so that our immune responses are kept in check during infections. Tregs only represent a small percentage of the cells making up our complete immune system but they're essential; without them we die from excessive inflammation," explained lead researcher and Babraham Institute group leader, Dr. Rahul Roychoudhuri.

"Despite this important role, there has been little evidence that unequivocally links the genetic variations that cause certain individuals to be susceptible to inflammatory diseases to changes in Treg function. It turns out that non-protein-coding regions provided us with the opportunity to address this important question in the field," noted Roychoudhuri.

By studying genomic regions that were not only conserved between species, but also among sections of the genome, the researchers found an enhancer region in mice that is analogous to the human region.

In the mouse, the scientists found that an enhancer helps regulate a Treg gene called GARP (Glycoprotein A Repetitions Predominant). When the enhancer was deleted, the GARP protein was lost from Tregs, and colon inflammation was out of control.

Gut inflammation in mice lacking a homologue of a distal enhancer found at the human chromosome 11q13.5 disease risk locus. / Credit: The Babraham Institute

"Genetic variation provides important clues into disease processes that can be targeted by drugs. In our joint efforts here, we combined human and mouse research to gain invaluable insight into complex processes underlying immune diseases. This has identified GARP as a promising new drug target and brings us a step closer to developing more efficient therapies for people suffering from diseases such as asthma or inflammatory bowel disease," said the senior study author Dr. Gosia Trynka of the Wellcome Sanger Institute and Open Targets.

"Decades of research have now identified the variations in our genomes that make some of us more susceptible to inflammatory diseases than others. It has been very difficult, however, to make sense of how these variations relate to immune disease since many of them occur in non-protein-coding regions, and therefore the implications of these changes are poorly understood," said Roychoudhuri. "Studies such as these will enable us to link the genetic switches that commonly reside in such disease-associated non-coding regions with the genes they control in different cell types. This will yield new insights into the cell types and genes underlying disease biology and provide new targets for therapeutic development."

Sources: AAAS/Eurekalert! via Babraham Institute, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 20, 2020
Genetics & Genomics
The Gene Behind the Glow of the Sea Pickle is ID'ed
OCT 20, 2020
The Gene Behind the Glow of the Sea Pickle is ID'ed
In this photo by OceanX, researchers off the coast of Brazil collected Pyrosoma atlanticum specimens with a special robo ...
NOV 14, 2020
Cannabis Sciences
New Genetic Test Identifies Cannabis THC Levels from Seeds
NOV 14, 2020
New Genetic Test Identifies Cannabis THC Levels from Seeds
Researchers from the University of Minnesota have developed a genetic test that can predict how much cannabidiol (CBD) o ...
DEC 10, 2020
Genetics & Genomics
Finding a Way to Restore Memory Loss Caused by Alzheimer's
DEC 10, 2020
Finding a Way to Restore Memory Loss Caused by Alzheimer's
It's thought that by the year 2060, there will be 14 million Americans living with Alzheimer's disease.
DEC 21, 2020
Cell & Molecular Biology
Mutagens May Be Having a Bigger Effect Than We Knew
DEC 21, 2020
Mutagens May Be Having a Bigger Effect Than We Knew
New research has suggested that our DNA is more susceptible to mutagenic influences than we've appreciated. While organi ...
JAN 01, 2021
Genetics & Genomics
Common Brain Disorder Has a Genetic Influence
JAN 01, 2021
Common Brain Disorder Has a Genetic Influence
It's thought that as many as one in one hundred people are born with a brain disorder known as Chiari 1 malformation, bu ...
JAN 15, 2021
Genetics & Genomics
Rare Quadruple Helix DNA Found in Live Human Cells
JAN 15, 2021
Rare Quadruple Helix DNA Found in Live Human Cells
Many people picture the classic double-stranded helix when picturing a molecule of DNA, but DNA is also capable of formi ...
Loading Comments...