JAN 15, 2016 9:22 AM PST

Unique Mutation Discovered to Cause Rare Genetic Disorder Fanconi Anemia

WRITTEN BY: Kara Marker
With new results from whole genome sequencing, scientists have identified a cause for a rare genetic disorder known to cause birth defects, bone marrow failure, and leukemia.
 
Fanconi anemia, a genetic disease that affects 1 in 160,000 individuals worldwide, is characterized by a loss of bone marrow function, and the resulting decrease in blood cell production can produce a variety of conditions like fatigue, anemia, blood clotting failure, and insufficiency of the immune response (NIH).
 

A team of scientists from the Institute for Systems Biology in Seattle, the Free University Medical Center in Amsterdam, and the Luxembourg Centre for Systems Biomedicine, a new study published in Nature Communications identified a surprising genetic mutation after completing whole genome sequencing of a child affected with Fanconi anemia.
 
The team located a mutation in the RAD51 gene, one of more than 15 genes with mutations known to cause Fanconi anemia. RAD51, along with other genes with mutations causing the disease, are part of the FA pathway (NIH). Genes in this pathway are turned on when DNA replication is inhibited because of DNA damage. With mutations occurring in this pathway, DNA repair is not accurately completed and the damage is left unchecked. 
 
What surprised the scientists involved in this study the most was that the RAD51 gene mutation was not found in his parents or his healthy sister. Normally genetic mutations causing Fanconi anemia is recessive and requires inheritance from both parents to cause disease. However, the mutation they found affected only 1 out of 2 gene copies, which they believe suggests a “novel origin” of the mutation.
 
Additionally, the mutation unexpectedly creates a protein product that hinders the action of the normal half of the protein product so even the non-mutated copy of the RAD51 gene could not effectively repair damage to DNA with other proteins of the FA pathway. Thus, the mutation these scientists identified is dominant.
 

This discovery is important as medical professionals continue to search for treatment and prevention strategies for this disease. The findings also show how this mutation can cause devastating diseases related to DNA damage like cancer and birth defects.
 
“Understanding the origins of human cancer will help diagnose it earlier and may help us devise new therapies to prevent or mitigate it,” the team reported in a news release.
 
Source: Institute for Systems Biology
 
About the Author
I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
OCT 24, 2022
Neuroscience
Frankenworld: Should We Be Afraid of Playing God or Failing To Love Our Monsters?
OCT 24, 2022
Frankenworld: Should We Be Afraid of Playing God or Failing To Love Our Monsters?
Lawyer Henry T. Greely analyzes the relevance of Mary Shelley's classic, "Frankenstein," in light of today's bioscience
SEP 15, 2022
Cell & Molecular Biology
A Totally Synthetic Microbiome is Designed & Built
SEP 15, 2022
A Totally Synthetic Microbiome is Designed & Built
In recent years, a mountain of evidence has revealed the significance of the human gut microbiome, a community of bacter ...
SEP 25, 2022
Genetics & Genomics
The next generation of library preparation solutions for DNA sequencing
SEP 25, 2022
The next generation of library preparation solutions for DNA sequencing
The next generation of library preparation solutions for DNA sequencing  Since the completion of the Human Genome P ...
SEP 26, 2022
Genetics & Genomics
Thousand-Year-Old Poop Teaches us About an Ancient Parasite
SEP 26, 2022
Thousand-Year-Old Poop Teaches us About an Ancient Parasite
Parasitic whipworm eggs have been isolated from fossilized human fecal samples that were estimated to be over 7,000 year ...
OCT 07, 2022
Genetics & Genomics
Epigenetic Marks Can Pass Down to Multiple Generations
OCT 07, 2022
Epigenetic Marks Can Pass Down to Multiple Generations
The earliest studies of genetic inheritance were very straightforward - Gregor Mendel documented the passage of certain ...
NOV 04, 2022
Cell & Molecular Biology
Copy Number Variation - An Important Aspect of Human Genetics
NOV 04, 2022
Copy Number Variation - An Important Aspect of Human Genetics
We learn that we inherit two copies of every gene, one from each of our parents, but the story is a bit more complex.
Loading Comments...