JAN 26, 2016 09:48 AM PST

The Harmony of Transcription and Translation

WRITTEN BY: Kara Marker
In order for the body to produce proteins to perform countless functions for daily maintenance, messenger RNA (mRNA) must be transcribed from the genetic information contained in DNA, and then the information from mRNA must be translated into a chain of amino acids. Transcription and translation are studied by biology students all over the world, and scientists are now realizing that the two processes are regulated differently and more complexly than previously thought.

New York University biologist Christine Vogel, PhD, likens the “highly regulated and coupled” processes of mRNA and protein production from the genetic information in DNA to someone walking up a moving escalator. Which movement is more important, the escalator mechanism or the person walking? In her recent paper published in Molecular Systems Biology, Vogel provides evidence for both types of actions being equally as important in the context of protein production.

By observing protein and transcriptional changes in mammalian cells in response to stress brought on by dithiothreitol (DTT), an antioxidant molecule used to stabilize enzymes and other proteins, Vogel and her team were able to observe differences in pattern over time between the two processes’ responses to outside stimuli (Promega).

Results from the study showed the DNA to mRNA transcription is a “pulse-like” process, whereas RNA to protein is more like an “on/off switch.”

"It is very costly for the cell to make proteins, but making RNA messages from DNA is a relatively low-energy and simple process, so it makes sense that we see frequent, or pulsating, signaling at this stage," Vogel said.

Protein production, on the other hand, is an “intricate undertaking,” which requires a steady stream of supply of energy and other resources. Vogel’s study shows that the difference in complexity between transcription and translation explains why one process is regulated more definitively, with a clear on and off state, and the other can transition between on and off more fluidly.

“Once you decided to stop production of proteins, you do not turn it back on that easily, and the other way around,” Vogel said.

The implications of these new findings are many. Learning more about genetic regulation could lead to gaining insight into the nature of genetic mutation genesis, improving gene therapy, and other aspects of genetics applicable to health and medicine.
 

Source: New York University
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 06, 2018
Genetics & Genomics
SEP 06, 2018
The Human Genome may Contain 20% Fewer Genes Than Thought
The human genome was once estimated to contain 50,000 to 90,000 genes; that number has been revised steadily downward....
SEP 12, 2018
Genetics & Genomics
SEP 12, 2018
Tightening Control of Bacterial Gene Expression
Controlling gene expression will improve the production of important molecules in bacteria, like therapeutics or biofuels....
OCT 05, 2018
Microbiology
OCT 05, 2018
Reducing Pollution with Engineered Bacteria
A varsity of creative strategies have been proposed as solutions to climate change, from practical to outlandish....
NOV 03, 2018
Genetics & Genomics
NOV 03, 2018
Stopping a Jumping Gene Invasion
Researchers have found that stem cells can react when transposons invade the genome....
NOV 17, 2018
Genetics & Genomics
NOV 17, 2018
Joubert Syndrome Model Successfully Treated with Gene-editing
A life-threatening kidney disease may be one day be a treatable condition thanks to new work by researchers, and patients with the illness....
NOV 17, 2018
Videos
NOV 17, 2018
Using Genetic Research to Improve Animal Conservation and Care
A group of Peters's Angolan colobus monkeys were brought to US zoos from East Africa in the 80s, but little is known about them....
Loading Comments...