MAR 09, 2016 5:30 PM PST

Can epigenetics make better cancer drugs?

Natural killer cells that can kill and contain viruses and cancerous tumors can be manipulated by epigenetics, a finding that paves the way for developing more effective cancer drugs.
 
Understanding how a new enzyme affects natural killer cells may eventually help make cancer drugs more effective, but scientists don't yet have enough information about their molecular makeup to use them in the laboratory.

“Natural killer cells are very attractive targets for immunotherapy because they are able to kill tumor cells,” says Si-Yi Chen, professor of molecular microbiology and immunology at the Keck School of Medicine at the University of Southern California.

“While scientists all around the world are working on developing new drugs using NK cells, none of the drugs in development focuses on epigenetic regulation of the cells.”

“Our study describes how an epigenetic process involving the enzyme MYSM1 plays a critical role in the development of natural killer cells.”

Epigenetics involve biochemical changes in the body that directly affect DNA, turning some genes on and turning others off. MYSM1 is an enzyme in the body’s immune system that turns genes on and off by modifying proteins called histones embedded in DNA.

For a study published in Proceedings of the National Academy of Sciences, Chen and colleagues used mice to demonstrate that MYSM1 is required for natural killer cells to mature and function properly.

“We found that MYSM1 creates access to proteins that enhance gene transcription and, ultimately, the maturation of natural killer cells themselves,” says Ph.D. student Vijayalakshmi Nandakumar, the study’s first author.

“To date, there are no elaborate reports linking an epigenetic phenomenon to natural killer cell development. More importantly, unlike conventional therapies, NK cell-based therapies have shown to be more effective against metastasis.

“We believe cancer drugs targeting this pathway could be a viable option for future immunotherapies.”

The National Institutes of Health and a Leukemia & Lymphoma Society Specialized Center of Research Award supported the research.

Source: USC

This article was originally posted on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
APR 24, 2020
Microbiology
How Syphilis Evades the Immune System
APR 24, 2020
How Syphilis Evades the Immune System
The incidence of syphilis has been rising for the past two decades, and over 115,000 new cases were diagnosed in the US ...
MAY 09, 2020
Clinical & Molecular DX
Rapid, Efficient COVID-19 Diagnostic Method Relies on Magnetic Beads
MAY 09, 2020
Rapid, Efficient COVID-19 Diagnostic Method Relies on Magnetic Beads
The pandemic virus SARS-CoV-2 has spread widely, and a lack of testing has been a serious problem.
MAY 10, 2020
Genetics & Genomics
Towards a Targeted Elimination of Leukemic Cells
MAY 10, 2020
Towards a Targeted Elimination of Leukemic Cells
Our blood carries many types of critical cells, including platelets, red blood cells, and white blood cells, which are m ...
MAY 16, 2020
Neuroscience
Stem Cell Method (Parkinson's) Could Avoid Transplant Rejection
MAY 16, 2020
Stem Cell Method (Parkinson's) Could Avoid Transplant Rejection
Researchers at McLean Hospital and Massachusetts General Hospital (MGH) have tested a stem cell treatment method that av ...
MAY 25, 2020
Genetics & Genomics
FDA Approves the First Treatment for Neurofibromatosis 1
MAY 25, 2020
FDA Approves the First Treatment for Neurofibromatosis 1
In a major breakthrough, the Food and Drug Administration has approved a treatment for a genetic disorder called neurofi ...
JUL 13, 2020
Cell & Molecular Biology
Getting a Closer Look at the Internal Scaffolding Supporting the Body
JUL 13, 2020
Getting a Closer Look at the Internal Scaffolding Supporting the Body
Researchers tagged proteins in the basement membranes of worms to visulize them. Image credit: Dan Keeley, UNC Chapel Hi ...
Loading Comments...