MAR 24, 2016 08:00 AM PDT

What Brad Pitt's cowlick has to do with fighting cancer

What does Brad Pitt have in common with a fruit fly? They both have cowlicks—a swirl of hair caused by a patterning mechanism.
 
Most cells in our body show a polarized organization that is important to carry out specialized functions, such as transporting nutrients across cells of the gut, sticking to each other to provide support and making larger scale patterns seen in hair, such as cowlicks.


Now, researchers have discovered the genes that cause cowlicks are regulated by a tumor suppressor protein. On the macro scale, their presence can be seen in feather and fish scale patterns. On the cellular level, they are directly regulated by a cancer protein, the retinoblastoma tumor suppressor protein.
 

Tumor suppressors, such as retinoblastoma, are guardians of our cells that control cell division, DNA repair and cellular suicide signals—all important tools in fighting cancer. In examining genes that have the retinoblastoma protein associated with them on the chromosomes, researchers discovered that polarity genes in the fruit fly Drosophila are controlled by retinoblastoma protein.

“We know that the retinoblastoma protein controls cell division, policing the activity of oncogenes, genes that can potentially cause cancer, but our study suggests that this protein also may control cell migration, which is thrown out of whack by diseases such as cancer,” says Sandhya Payankaulam, lead author of the study published in Scientific Reports and research assistant professor at Michigan State University, who works in David Arnosti’s and Bill Henry’s biochemistry and molecular biology labs.

Most cells in our body show a polarized organization that is important to carry out specialized functions, such as transporting nutrients across cells of the gut, sticking to each other to provide support and making larger scale patterns seen in hair, such as cowlicks.

Polarity specifies the front and rear end of a cell, which is absolutely essential for proper migration from one place during development. Control of this migration is lost when cancer cells move about the body during metastasis, at which point the disease becomes difficult to treat.
 

Fruit flies: Tiny people with wings


“A great deal of research on cell polarity is directed toward understanding how polarity proteins interact with each other in cells,” Arnosti says. “Until now, people neglected the regulation of polarity genes, thinking them to be regulated in a rather humdrum manner similar to ‘housekeeping’ genes that are devoted to basic cellular functions. Our work challenges this view and raises an important question relevant to development of new cancer diagnosis and therapies.”

Since fruit flies are essentially tiny people with wings, in terms of genetics, these model organisms can play a key role in advancing human medicine. From analysis of data from human cells, the researchers believe that retinoblastoma plays a similar role in humans, possibly contributing to cancer metastasis.

Payankaulam showed that the fruit fly retinoblastoma protein regulates the polarity genes important for this process, and loss of the fly protein induced misoriented wing hairs, generating an unkempt appearance.

The researchers showed that such defects in establishment of polarity also were found in other tissues, indicating that retinoblastoma protein has a general responsibility for polarity regulation.

Researchers from the University of Toronto are coauthors of the study. The National Institutes of Health funded the work.

Source: Michigan State University

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
NOV 15, 2018
Genetics & Genomics
NOV 15, 2018
How Technology can Help Feed the World
As the world's population grows, plant scientists know that the race is on to develop technologies that will help feed everyone....
NOV 20, 2018
Immunology
NOV 20, 2018
Mutations Mutations Which Ones Do We Want?
A team at UCSF makes use of new SLICE tool to generate mutations that reveal specific genetic functions....
NOV 23, 2018
Videos
NOV 23, 2018
Authorities Enlist DNA Experts to ID Camp Fire Victims
Paradise, California, a town of 26,682 residents, was destroyed by the Camp Fire earlier this month....
DEC 30, 2018
Genetics & Genomics
DEC 30, 2018
An Improved Alzheimer's Model Adds Genetic Diversity
Researchers created a mouse model of Alzheimer's disease that has more in common with the human disease than current models....
JAN 06, 2019
Cell & Molecular Biology
JAN 06, 2019
An Inhalable Form of Messenger RNA Might be a New Kind of Therapeutic
Messenger RNA normally carries genetic information from the genome to the ribosome, but researchers want to use it to treat disease....
JAN 08, 2019
Microbiology
JAN 08, 2019
Ebola Relative is Discovered
Bats are a vital part of the ecosystem, but they also host deadly viruses. Scientists have now discovered a new filovirus in a bat....
Loading Comments...