JUN 03, 2016 9:58 AM PDT

For the First Time: CRISPR for RNA

WRITTEN BY: Kara Marker
For the first time since 2007 when scientists were just beginning to understand the DNA manipulation capabilities of CRISPR, researchers have now found a way to target RNA instead of DNA.
 
 
 
CRISPR, which stands for “Clustered Regularly Interspaced Short Palindromic Repeats,” naturally occur in bacteria as a method of self-protection from invading viruses. In the past decade, scientists have found various ways to harness this technology for human purposes, often using an endonuclease protein called Cas9 to target and destruct invading DNA based on sequence complementarity.
 
Now, in a collaborative effort between the Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, the National Institutes of Health, Rutgers University- New Brunswick and the Skolkovo Institute of Science and Technology, researchers have applied for the first time a naturally-occurring version of the CRISPR system to manipulate gene expression by targeting RNA and only RNA.
 
The new system relies on an RNA-guiding enzyme called C2c2 to target and degrade RNA in order to change or even completely inhibit genetic expression. CRISPR-C2c2 occurs naturally in bacteria, as these small organisms fall victim to viral infection just like humans do. By harnessing this system in the laboratory, the team of researchers can specifically program C2c2 to cleave a specific RNA sequence to produce a desired effect.
 

 
In their study, published recently in the journal Science, the team of researchers used C2c2 to target and remove precise RNA sequence, resulting in altered expression of the RNA-associated protein. The researchers acclaim CRISPR-C2c2 as an efficient, two-component system that only needs one guide RNA to function properly. Most importantly, the team has dubbed CRISPR-C2c2 as an alternate approach to another technique called RNA interference.
 
Like CRISPR, RNA interference (RNAi) is naturally found in organisms as a way to regulate gene expression. Small RNAs like microRNA (miRNA) and small interfering RNA (siRNA) silence specific mRNAs in the cytoplasm to impact normal gene expression. These small RNAs bind to an RNA-induced silencing complex and are then guided to a specific RNA strand for cleaving and degrading. While this process if precisely governed by base-pairing, many changes that are made are only temporary, whereas CRISPR-C2c2 offers a way to make permanent changes to the cell’s genome.
 
The newly developed “CRISPR for RNA” system is suitable for adjusting gene expression levels to either decrease or increase. The researchers also believe that this system will provide better specificity and functionality than existing methods for RNAi.
 
Researchers believe that this new system for targeting RNA will be useful for a myriad of clinical uses:
  • Disease prevention, treatment, and research
  • Protein alteration from transcription manipulation
  • Fluorescent tagging of RNA to observe movement patterns and “subcellular localization”
"Applications of this strategy could be quite striking,” said senior author Eugene Koonin, PhD, from the NIH.
 


Sources: Broad Institute of MIT and Harvard, New England BioLabs, Nature Reviews Genetics
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 27, 2020
Clinical & Molecular DX
Genetic Tool Predicts Breast Cancer Risk in Women of Asian Ancestry
AUG 27, 2020
Genetic Tool Predicts Breast Cancer Risk in Women of Asian Ancestry
  Many diseases such as breast cancer have both a strong genetic component, coupled with a variety of environmental ...
AUG 27, 2020
Cardiology
Are Dry Mouth and Hypertension Connected?
AUG 27, 2020
Are Dry Mouth and Hypertension Connected?
Dry mouth is one of those things you sort of ignore until you can refill your water bottle. Maybe you should take a seco ...
OCT 29, 2020
Genetics & Genomics
Severe Genomic Damage in Human Embryos Treated With CRISPR
OCT 29, 2020
Severe Genomic Damage in Human Embryos Treated With CRISPR
The CRISPR-Cas9 genomic editing system holds great promise for treating genetic errors that cause human disease. But we ...
NOV 07, 2020
Genetics & Genomics
How the Suction Cups on Octopus Arms Detect Their Surroundings
NOV 07, 2020
How the Suction Cups on Octopus Arms Detect Their Surroundings
Scientists have taken a close look at the physiology of the octopus, creatures that are ancient and unique. Their arms c ...
NOV 12, 2020
Genetics & Genomics
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
NOV 12, 2020
Liposomes Potentially Safer Alternative to Viruses for CRISPR Delivery
To repair disease-causing errors in the genome, gene editing reagents like those used in CRISPR-Cas9 first have to reach ...
NOV 20, 2020
Genetics & Genomics
How a Genetic Mutation Can be Good for Carriers
NOV 20, 2020
How a Genetic Mutation Can be Good for Carriers
Genetic mutations are usually connected to disease, but there are some that are known to improve people's lives.
Loading Comments...