JUN 30, 2016 11:05 AM PDT

What Are Malaria Parasites Hiding In Their Genes?

WRITTEN BY: Kara Marker
In the world of malaria infection, Plasmodium falciparum parasites will always be queen to their less lethal cousin, Plasmodium vivax. However, P. vivax has a unique pathogenic arsenal of its own, with a significantly higher genetic diversity than P. falciparum. A new study sponsored by the National Institute of Allergy and Infectious Diseases focused specifically on the less popular malaria parasite, sequencing entire genomes of almost 200 strains.
Red blood cell stages of Plasmodium vivax from malaria patients in Thailand. 
Malaria is a mosquito-borne disease that becomes severe after just 24 hours of infection. A treatment called artemisinin-based combination therapy (ACT) is available to treat malaria, but quick diagnoses are often difficult to make due to initial symptoms (fever, headache, chills, vomiting) being confused with other, minor illnesses. Malaria infections from the P. vivax parasite are indeed less common than those from P. falciparum, but P. vivax still causes up to 16 million cases of malaria per year.
 
P. vivax parasites have a few tricks up their sleeves that make them especially difficult to be controlled or treated. One form of P. vivax remains dormant in the liver for months at a time, causing spells of fever and weakness every so often just to remind the infected person that it’s there. This parasite is also impossible to be grown in the lab, knocking out a key step in the scientific process that researchers use to study pathogens, looking for weak spots.
 
Potentially one of the most frightening qualities of P. vivax parasites is their massive genetic diversity. Like the flu virus that mutates every year, putting researchers to the test to come up with new vaccines every year to prevent outbreaks, P. vivax strains differ in communities and in larger regions so that a single drug target will only work for a small proportion of all P. vivax strains. “The research community has always known that P. vivax would be the last malaria parasite standing,” said Jane Carlton, PhD, one of the study leaders from New York University.
 
Along with co-leader Daniel Neafsey, PhD, from the Broad Institute, Carlton and their team developed their study based off of 2012 findings that showed P. vivax parasites have twice the genetic diversity as their P. falciparum parasitic cousins. In addition to the three countries represented from the 2012 study, Carlton and Neafsey added eight more countries from volunteer blood samples. Countries represented included Papua New Guinea, India, Thailand, Mexico, and countries in South and Central America.
 
A unique technique developed by Neafsey and colleagues from the Broad Institute enabled the researchers to increase and isolate parasitic DNA in red blood cell samples from human DNA, which appeared in much larger amounts. The volunteer blood samples and the new technology led to the cultivation of 182 genetic sequences of parasitic isolates, “confirming and expanding” their understanding of P. vivax parasites’ unique genetic diversity.
 
Now being able to associate certain genetic variants with certain countries and regions within those countries, scientists can begin to understand how P. vivax has adapted to different mosquito vectors as well as to different human populations. By comprehending more about the movement of P. vivax over time, scientists are one step closer to developing a more effective way to prevent this invasive parasite from infecting people with malaria. P. vivax may be the last parasite standing, but scientists plan to have a solution for their destruction when the time comes.
 

 
Sources: National Institutes of Health, National Institute of Allergy and Infectious Diseases, World Health Organization
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 25, 2018
Genetics & Genomics
AUG 25, 2018
Gene Therapy for Eye Disease is Getting Closer to the Clinic
About one of every 3,500 Americans suffers from a degenerative eye disease called retinitis pigmentosa...
SEP 28, 2018
Genetics & Genomics
SEP 28, 2018
How Genes Changed in Domesticated Foxes
Over fifty years ago, scientists in Russia began to selectively breed silver foxes to replicate domestication....
OCT 02, 2018
Health & Medicine
OCT 02, 2018
Many Patients Are Unaware of Increased Cancer Risk
Just as recently as a few decades ago, many common health screenings were not readily available. Mammography, for breast cancer detection, wasn't ...
OCT 08, 2018
Videos
OCT 08, 2018
Harvesting Ancient DNA Samples
The story of an ancient insect that found itself trapped in amber is not a new one, but does it work?...
NOV 03, 2018
Genetics & Genomics
NOV 03, 2018
Stopping a Jumping Gene Invasion
Researchers have found that stem cells can react when transposons invade the genome....
NOV 20, 2018
Genetics & Genomics
NOV 20, 2018
Scientists Link Three Genes to Miscarriage
A miscarriage can be a devastating experience, and researchers are trying to learn more about genetic factors that may influence it....
Loading Comments...