AUG 04, 2016 8:46 AM PDT

Why do scientists call DNA the "blueprint of life?"

WRITTEN BY: Kara Marker
DNA and RNA have nearly identical building blocks yet DNA seems “chosen” to be the holder of genetic information, with RNA merely being the middleman, the transcriber of the genetic code into tangible proteins. Now scientists are asking the question, why DNA and not RNA?
The DNA double helix can contort into different shapes to absorb chemical damage to the basic building blocks (A, G, C and T, depicted by black dot) of genetic code. An RNA double helix is so rigid and unyielding that rather than accommodating damaged bases, it falls apart completely.
Ever since Watson and Crick and probably even before then, scientists held an immense curiosity concerning the shape and function of nucleic acids that contain the code for life. Duke University’s Hashim M. Al-Hashimi and his team of researchers have a rich history of studying the structure of DNA and RNA, and previous findings indicate DNA’s flexibility as the quality making it superior. 

"There is an amazing complexity built into these simple beautiful structures, whole new layers or dimensions that we have been blinded to because we didn't have the tools to see them, until now," said Al-Hashimi, lead author of the recent Duke study published in Nature Structural and Molecular Biology.

The traditional double helix of DNA, portrayed in images and depictions of the nucleic acid for generations, is what scientists believes keeps the genome stable and strong, protecting against things like cancer and aging. But can’t RNA form a double helix as well? It can, but adapting to this formation makes RNA rigid, fragile, and “unaccomodating” to nucleotide binding.

In the past, Al-Hashimi’s research led him to discover the change in structure DNA goes through when dealing with so-called “chemical insults” - being bound by a protein or receiving damage to its traditional structure. DNA responds to changes by “contorting itself into different shapes to absorb chemical damage to the [nucleotides].” Once DNA is able to shed the bound protein or repair any damage, it reverts back to the traditional, Watson and Crick-style double helix.

In his most recent study, Al-Hashimi and his team searched for changes in RNA nucleotide binding pairs as a response to similar chemical insults, expecting a reaction like that of DNA. They used a sophisticated imaging technology called NMR relaxation dispersion to observe changes in individual guanine and adenine bases, which make the infamous “spiraling steps” of two model double helices: DNA and RNA. 

Surprisingly, there was “no detectable movement” of the base pairs in RNA, while previous studies had clocked DNA bases moving in response to protein binding or chemical damage from the traditional double helix by at least one percent. To confirm, the researchers continued testing more RNA molecules under several different conditions. Still no movement of bases.

Finally, the researchers manually altered the formation of RNA into the structure observed in DNA in response to chemical insult. What they saw next seemed to completely explain why DNA is charged with holding the genetic code. After being altered, RNA base pairs couldn’t reconnect, and the RNA strands fell apart at the site of alteration.

What is the cause of this key structural difference between RNA and DNA? Scientists believe it’s because RNA’s double helix structure is more “compressed” than that of DNA. Scientists also define the difference as a case of “A-form” (RNA) versus “B-form” (DNA). It is this difference that scientists believe adds an extra “dimension” to DNA’s structure, believed to add a higher level of functionality that allows it to adequately carry genetic information. 
 


Source: Duke University
Image: 
Huiqing Zhou, Duke University
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAY 09, 2021
Microbiology
Bacteria Can Read Genes Forwards or Backwards
MAY 09, 2021
Bacteria Can Read Genes Forwards or Backwards
One of the most basic processes in life in the creation of proteins from mRNA molecules, which are transcribed from DNA. ...
MAY 11, 2021
Cell & Molecular Biology
Problems in Human Egg Fertilization Are Common
MAY 11, 2021
Problems in Human Egg Fertilization Are Common
This ©MPI for Biophysical Chemistry microscopy image shows a bovine egg after fertilization.
MAY 20, 2021
Genetics & Genomics
Mitochondrial DNA May be Affecting More Traits Than we Knew
MAY 20, 2021
Mitochondrial DNA May be Affecting More Traits Than we Knew
While the vast majority of our genes are in the genome that's held in the nuclei of cells, mitochondria are also known t ...
JUN 05, 2021
Coronavirus
Newly-Named Coronavirus Variant Causes Concern
JUN 05, 2021
Newly-Named Coronavirus Variant Causes Concern
WHO has decided to create a new naming system for coronavirus variants for several reasons. The names will now be based ...
JUN 09, 2021
Genetics & Genomics
Going to Bed an Hour Earlier Cuts Depression Risk Significantly
JUN 09, 2021
Going to Bed an Hour Earlier Cuts Depression Risk Significantly
Could it be possible to reduce the risk of developing depression by 23% simply by waking up an hour earlier? That's what ...
JUN 15, 2021
Cardiology
A Common Thread Among 20% of Sudden Cardiac Deaths
JUN 15, 2021
A Common Thread Among 20% of Sudden Cardiac Deaths
It's estimated that 450,000 Americans die from sudden heart conditions, and in about one in ten cases, the cause is unex ...
Loading Comments...