OCT 04, 2016 09:35 AM PDT

Stabilizing the Ultimate Tumor Suppressor

P53 is one of the most well-known and researched tumor suppressor genes in the human genome. It is common knowledge that p53 recognizes and responds to DNA damage in the cell by increasing expression of DNA repair and cell division pathways. If p53 is mutated, it is not able to regulate DNA damage in a cell, leaving the cell prone to potential cancerous mutations. In fact, p53 is one of the most common causes of many different cancer types.
Standard p53 pathway (By Thierry Soussi)
The p53 pathway is an important regulatory decision maker in cells, helping activate DNA repair mechanisms so cells don’t self-destruct due to minor damage. DNA damage is common in DNA replication. With approximately 3 billion nucleotides to replicate, there are bound to be errors. External influences can also cause damage, such as UV light, radiation, or chemicals. Most damage can be repaired quickly without consequence. Other damage can be so severe the cell initiates its own demise. In this way, the p53 pathway is critical to a cell’s survival.

Most research done on the p53 pathway focuses on the genes and proteins involved in regulation and pathway progression. New research from a Stanford team led by Professor of Dermatology Howard Chang, MD, PhD has revealed a new member of the pathway, a novel regulatory long noncoding RNA called DINO. Long noncoding RNAs, or lncRNAs, have been discovered to play critical roles in more and more regulatory pathways in a cell.

Chang and colleagues found that DINO binds to and stabilizes p53 via a positive feedback loop. P53 activates and increases expression of DINO, which then binds to the p53 molecule to stabilize it, allowing it to amplify its signal. P53 is most active in the nucleus where DNA is replicated. DINO is made in the nucleus as well, providing a quicker and more precise response to DNA damage than could be seen from regulatory proteins produced in the cytoplasm.

“DINO expression allows the cell to fine-tune its response to DNA damage and respond appropriately,” said Chang.

The team experimented with increased and decreased expression of DINO. They found that when DINO expression is increased, cells respond as if there was DNA damage to repair. When DINO expression is decreased, cell response to p53 activation is dulled. This places DINO directly within the p53 pathway as a regulatory mechanism of damage response in cells. Implicating RNA in pathways has helped scientists increase their understanding of cell responses and provides a broader range of potential therapies to disease.

“Positive feedback loops are used in many applications, including engineering, to increase the sensitivity of systems and apply thresholds for action,” said Chang. “We believe DINO may play role in cancer development and possibly premature aging by modulating how a cell responds to DNA damage.”

Sources: Stanford News, lncRNABlog, Nature Genetics
About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
SEP 02, 2018
Cell & Molecular Biology
SEP 02, 2018
Cancer Cell Lines can Evolve in the Lab
New research shows that scientists have to take steps to verify the identity of the cell lines they grow....
SEP 03, 2018
Cell & Molecular Biology
SEP 03, 2018
Predicting the Impact of Gene Splicing Errors
Researchers are beginning to learn more about how gene mutations that affect RNA splicing are connected to health problems....
SEP 04, 2018
Drug Discovery
SEP 04, 2018
Treating Symptoms of Huntington Disease
According to a new study published in the Proceedings of the National Academy of Sciences (PNAS), a genetic disorder known as Huntington's disease may ...
OCT 02, 2018
Health & Medicine
OCT 02, 2018
Many Patients Are Unaware of Increased Cancer Risk
Just as recently as a few decades ago, many common health screenings were not readily available. Mammography, for breast cancer detection, wasn't ...
OCT 14, 2018
Technology
OCT 14, 2018
Computational Technology Uses Genetics To Solve Crime
When detectives tracked down the Golden State Killer, who terrorized the state of California during the 1970s and 1980, they used an online genealogical da...
NOV 12, 2018
Microbiology
NOV 12, 2018
Some Bacteria Gain Resistance Even Without Exposure to Antibiotics
Most bacteria are harmless, some are even beneficial to us. But some of the dangerous ones pose a real threat to public health....
Loading Comments...