OCT 29, 2016 1:36 PM PDT

Wound-Healing Gene Discovered in Mice

WRITTEN BY: Kara Marker
Humans may not be able to regenerate limbs like zebrafish can regenerate fins, but improving the human ability to heal wounds with the same mechanisms that zebrafish incorporate could work. In fact, the newest study from the National Institutes of Health (NIH) found a gene that might be able to do just that.
A topical treatment is applied to a wound. A team of researchers have demonstrated that a gene (Hsp60) is essential for wound healing. Photo credit: kdshutterman/shutterstock.com
A gene called heat shock protein 60 (Hsp60) has just been discovered to be critical for tissue regeneration and wound healing in humans, according to a study from the NIH’s National Human Genome Research Institute (NHGRI).

"This study proposes an unusual role for a well-known gene," said senior author Shawn Burgess, Ph.D. "This gene is found in every organism from bacteria to man. We have shown that in vertebrates, it has a surprising role in immunity that is essential for wound healing."

Before this study, published in the journal npj Regenerative Medicine, Hsp60 was known for producing proteins that patrolled other proteins, ensuring they were folded correctly. However, findings that showed Hsp60 doubled as a signaling molecule that triggered an inflammatory response to bacterial infection from a cut in the skin, NHGRI scientists thought the gene might be connected to wound healing as well.

They examined the role of Hsp60 with targeted mutagenesis: creating zebrafish mutants with Hsp60 deleted from their genome. The experimental zebrafish developed normally at first, but when they were wounded either by amputation of a caudal fin or damage done to hearing cells, they couldn’t regenerate the proper tissues. However, when they injected  Hsp60 directly to the site of injury, Burgess explained, “the tissue surrounding the wound started to regenerate faster," said Dr. Burgess. "That's when we got really excited."

The applications of a potential wound healing acceleration gene could provide novel therapeutics for wound closure in diabetic patients, fifteen percent of which develop foot ulcers due to reduced sensation, poor circulation, and skin irritation, and they can lead to hospitalization and even amputation. According to the researchers, diabetes is the leading cause of non-traumatic lower limb amputation in the United States.

The gene could also lead to normal wound healing and scar reduction in non-diabetic individuals. “We also want to know if it will help any wound heal, not just wounds encountered by people with diabetes,” Burgess said. “Will it reduce scarring and increase the speed of healing? When we understand the biology better, we can more easily apply it to human treatments.”
 


Source: NIH/National Human Genome Research Institute
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAY 17, 2021
Neuroscience
Genetic Changes in Brain Immune System May Cause Psychosis
MAY 17, 2021
Genetic Changes in Brain Immune System May Cause Psychosis
The exact biological mechanisms behind psychosis, a condition that changes one’s perception of reality and often i ...
JUN 06, 2021
Genetics & Genomics
How Autism-Associated Mutations in One Gene Impact the Brain
JUN 06, 2021
How Autism-Associated Mutations in One Gene Impact the Brain
Autism spectrum disorder is complex; it presents differently in different patients and may be influenced by many factors ...
JUN 20, 2021
Genetics & Genomics
Revealing Epigenetic Causes of Type 1 Diabetes
JUN 20, 2021
Revealing Epigenetic Causes of Type 1 Diabetes
Our bodies have to regulate the level of glucose, or sugar, in the blood. The hormone insulin, produced by beta cells in ...
JUN 27, 2021
Cell & Molecular Biology
Organoids Reveal Common Mechanism Underlying Rare Disorders
JUN 27, 2021
Organoids Reveal Common Mechanism Underlying Rare Disorders
Genetic testing has shown that mutations in a gene called HUWE1 are connected to rare syndromes that cause developmental ...
JUN 27, 2021
Genetics & Genomics
How Colorful Geckos Can Teach Us About Biology
JUN 27, 2021
How Colorful Geckos Can Teach Us About Biology
A colony of Lemon Frost geckos was created by the reptile shop of Steve Sykes, which included Mr. Frosty, seen here cour ...
JUL 02, 2021
Genetics & Genomics
Fish Models Provide New Insight Into Rare Genetic Diseases
JUL 02, 2021
Fish Models Provide New Insight Into Rare Genetic Diseases
Fish can serve as good research models. They can develop quickly, outside of the mother where they can be observed. Some ...
Loading Comments...