JAN 30, 2017 11:53 AM PST

Gene Therapy Restores Partial Hearing and Balance

WRITTEN BY: Jennifer Ellis

Our hearing ability depends on small sensory hair cells in the inner ear. These microscopic hair cells sense sound vibrations and convert them to electrical signals that are sent to the brain to detect sounds. Hearing loss can occur when these hair cells are damaged or are not functional due to genetic mutations during development. Data from the CDC estimates 2-3 out of 1,000 babies born annually in the United States have some form of hearing loss, and about 1 in 1,0000 of these babies have a genetic defect in their inner ear hair cells.

Anatomy of the inner ear

Scientists from Harvard Medical School and Massachusetts General Hospital have developed a novel form of gene therapy that can restore hearing and some balance impairment in mice born with genetic defects in these inner ear hair cells.

Prior efforts using gene therapy to improve hearing loss have had challenges with insertion of the functional gene into the hair cells. These cells have proven somewhat impenetrable by standard gene therapy methods using adeno-associated virus (AAV). The virus has been unable to enter the particular inner ear hair cells through methods successful in other types of cells.

A team led by co-investigators Casey Maguire, HMS assistant professor of neurology at MGH, Xandra Breakefield, HMS professor of neurology at MGH and neurobiologist David Corey, Bertarelli Professor of Translational Medical Science at HMS, has discovered that by changing the approach taken to standard gene therapy methods, the inner ear hair cells can be treated and hearing loss and balance issues can be at least partially restored.

By using an entry method developed by Maguire and colleagues, the team created a line of cells containing AAV that naturally buds off exosomes with the AAV inside. By creating a vehicle for the functional gene needed for healthy hair cells, the scientists observed 50-60% entry rates of AAV compared to 20% entry into hair cells using standard gene therapy.

“Unlike current approaches in the field, we didn’t change or directly modify the virus. Instead, we gave it a vehicle to travel in, making it better capable of navigating the terrain inside the inner ear and accessing previously resistant cells,” said Maguire.

In order to test the functionality of the method in organisms, the group injected AAV-containing exosomes (exo-AAV) that carried the functional gene of interest into the inner ears of mouse pups born without a gene needed for hair cell function. These mice cannot hear loud sounds and exhibit impaired balance seen by head tossing and running in circles.

Post-injection testing revealed that the exo-AAV method allowed the gene to enter 30-70% of both inner and outer hair cells. The team performed hearing tests on the mice on month after treatment and found that 9 of 12 mice had significantly improved hearing and balance. They were startled by a loud clap, and four could hear sounds equivalent to a loud conversation.

While the team is quick to assert that the therapy is not ready for testing in humans, the new approach shows great promise for treatment of hearing loss from both genetic and acquired causes.

Sources: Harvard News, NIH

About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
JAN 19, 2020
Immunology
JAN 19, 2020
Overactive Immune Gene May Cause Schizophrenia
A windy road links excessive activity of the “C4” gene to the development of schizophrenia. Researchers begin to study C4 activity as part of n
FEB 03, 2020
Neuroscience
FEB 03, 2020
Genetic Characterization of Bipolar Disorders, Major Depressive Disorder
Mood disorders, like Bipolar, Major Depressive Disorder, and Schizophrenia, among others, are difficult to define clinic...
FEB 17, 2020
Cell & Molecular Biology
FEB 17, 2020
Scientists Learn Why Some Body Clocks Are Too Short
Some individuals are morning people to the extreme. Some genetic mutations give the body clock a 20 instead of 24-hour cycle.
MAR 02, 2020
Genetics & Genomics
MAR 02, 2020
DNA Replication Discovery May Lead to New Cancer Treatments
Researchers have learned more about DNA replication during cell division, and their insights may help create new types of cancer therapeutics
MAR 16, 2020
Genetics & Genomics
MAR 16, 2020
How To: Recombinant Protein Construct Design
Creating recombinant proteins has become much easier over the past few decades. However, those with the skills to do design such constructs are usually lim
MAR 30, 2020
Genetics & Genomics
MAR 30, 2020
Scientists Discover an Antibiotic Resistance Gene
The gene enables bacteria to resist the effects of an aminoglycoside antibiotic called plazomycin.
Loading Comments...