MAR 18, 2015 12:44 PM PDT

Gene Discovery Provides Clue to How TB May Evade the Immune System

WRITTEN BY: Ilene Schneider
The largest genetic study of tuberculosis (TB) susceptibility to date has led to a potentially important new insight into how the pathogen manages to evade the immune system. Published today in the journal Nature Genetics, the study advances understanding of the biological mechanisms involved in TB, which may open up new avenues to design efficient vaccines for its prevention.

TB, caused by infection with the pathogen Mycobacterium tuberculosis, is a major global public health problem. According to the World Health Organization, in 2013 nine million people fell ill with TB and 1.5 million died from the disease. Over 95 percent of TB deaths occur in low- and middle-income countries. About one-third of the world's population has latent TB - in other words, they carry the infection but show no symptoms; only around one in ten of infected individuals develop active TB.

Evidence suggests that an individual's DNA affects their susceptibility to TB, both in terms of becoming infected and whether the disease progresses from latent to active TB. In order to identify genes that predispose people to TB, an international team of researchers carried out a genome-wide association study (GWAS), comparing the genomes of 5,500 TB patients against those of 5,600 healthy controls. In total, the researchers analysed 7.6 million genetic variants.

The team found that variants of the gene ASAP1 on chromosome 8 affect individuals' susceptibility to TB. The gene encodes a protein carrying the same name and is highly expressed - in other words, larger amounts of the protein are found - in a particular type of immune cells known as dendritic cells that play a key role in kick-starting the body's immune response to incoming pathogens.

The researchers showed that infection with M. tuberculosis leads to the reduction of ASAP1 expression in dendritic cells - but people who have a particular genetic variant in the ASAP1 gene associated with greater susceptibility to TB show stronger reduction of ASAP1 expression after infection than people who have a protective variant of this gene.

The researchers found that reducing levels of the ASAP1 protein affects the ability of dendritic cells to move, which explains the mechanism of the previously-known slow migration of dendritic cells infected with M. tuberculosis and may help the pathogen to evade the immune system, leading to TB.

"Our study provides a new insight into biological mechanisms of TB," said Dr Sergey Nejentsev, Wellcome Trust Senior Research Fellow from the Department of Medicine at the University of Cambridge, who led the research. "TB is a major global health problem and the threat of drug-resistance means that we urgently need to develop new ways of fighting back. In future, it may be possible to target immune pathways that involve ASAP1 to design efficient vaccines for TB prevention."

Source: University of Cambridge
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
DEC 13, 2019
Genetics & Genomics
DEC 13, 2019
A DNA 'Stitch' as a Therapy for Duchenne Muscular Dystrophy
DMD is a genetic disorder that causes degeneration in muscles. Now there may be a treatment for as many as 47% of patients....
DEC 13, 2019
Genetics & Genomics
DEC 13, 2019
Researchers Develop a Score to Quantify the Risk of Epilepsy
It usually takes two seizures before a person can be diagnosed with epilepsy. New work can help change that....
DEC 13, 2019
Genetics & Genomics
DEC 13, 2019
Success in Treating Schizophrenia in Mice
Approximately 3.5 million people in the US have been diagnosed with schizophrenia. Although various therapies are available to treat and manage the illness...
DEC 13, 2019
Drug Discovery & Development
DEC 13, 2019
FDA Approves New Drug for Sickle Cell Disease
Sickle cell disease affects approximately 100,000 Americans. Currently, the only available cure for the disease is a costly bone marrow transplant, putting...
DEC 13, 2019
Genetics & Genomics
DEC 13, 2019
New Tool Rapidly Detects Unintended Gene Changes from CRISPR
CRISPR is one of the most promising technologies under development to treat deadly inherited conditions such as cystic fibrosis and sickle cell disease. No...
DEC 13, 2019
Genetics & Genomics
DEC 13, 2019
The Fallout From the CRISPR Infant Experiment Continues
Last year, Chinese scientist He Jiankui caused tremendous controversy in the scientific world by conducting a gene-editing experiment on humans....
Loading Comments...