DEC 23, 2017 1:44 PM PST

Complex Mutations can Help Drive Evolution

WRITTEN BY: Carmen Leitch

In the early days of genetics research, scientists often searched for a mutated gene that was causing a disease. In many cases, that search yielded results that allowed researchers to learn a lot more about the gene and the disease. But many complex mutations that cause structural changes to the genome are much more difficult to detect using standard methods. Now, work reported in Nature Genetics has used an analysis of the fruit fly genome, a standard model in genetics, to reveal more about complex mutations. This work identified previously unknown mutations and has helped researchers learn more about evolution.

First author Mahul Chakraborty looks through several specimens of fruit flies to identify new phenotypes. / Credit: UCI

As is often the case in genomic studies, excellent sample quality made all of the difference in this work. "For the first time in animals, we have assembled a high-quality genome, permitting the discovery of all the genetic differences between two individuals within a species," noted first author Mahul Chakraborty, a postdoctoral fellow in the Emerson laboratory. "We uncovered a vast amount of hidden genetic variation during our analyses, much of which affects important traits within the common fruit fly, D. melanogaster."

Rather than reading many small bits of the genome and then piecing them together to create a big picture of the whole sequence, for this work, the researchers sequenced much larger chunks of the genome. This approach allowed them to reveal complex alterations like additions, subtractions, and rearrangements that changed the genomic structure.

"This study is the first of its kind in complex organisms like the fruit fly. With this unique resource in hand, we have already characterized several candidate structural variation which show evidence for phenotypic adaptation, which can function to drive species evolution," explained Emerson.

The investigators saw that fruit fly evolution could be affected by these genomic structural changes; they have phenotypic consequences. The expression of detoxification genes was found to be significantly amplified by such structural alterations. The observations in gene expression changes may help explain how flies can increase nicotine resistance.

The researchers have suggested that because they discovered so much genetic variation in this model, more complex genomes are likely to harbor even more.

Dr. Chakraborty gave a talk about this work at the 'Evolution & Quantitative Genetics II' session of the Annual Drosophila Research Conference at The Allied Genetics Conference in July 2016. It is shown in the video.

Sources:  AAAS/Eurekalert! Via University of California IrvineNature Genetics

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 26, 2020
Cell & Molecular Biology
Levels of RNA Transcripts From 'Junk' DNA Get Higher as We Age
AUG 26, 2020
Levels of RNA Transcripts From 'Junk' DNA Get Higher as We Age
There is a lot more to the genome than just genes that code for proteins.
AUG 28, 2020
Cancer
Using CRISPR-Cas12a to Repair Hereditary Cancers in the Lab
AUG 28, 2020
Using CRISPR-Cas12a to Repair Hereditary Cancers in the Lab
Genome repair is one of the big-ticket research areas for the future of medicine. CRISPR-Cas9 systems can edit the genom ...
SEP 30, 2020
Genetics & Genomics
Not All Vikings Were Scandinavian, New Genetic Research Shows
SEP 30, 2020
Not All Vikings Were Scandinavian, New Genetic Research Shows
Genetic research has upended what we thought was true of Vikings. These seafaring invaders left archeological sites thro ...
OCT 19, 2020
Cancer
Using qPCR to Diagnose Common Cancer Mutations in Lung Cancer
OCT 19, 2020
Using qPCR to Diagnose Common Cancer Mutations in Lung Cancer
Cancer is a disease characterized by DNA mutations. These mutations, while sometimes small, can cause havoc in a cell&rs ...
NOV 08, 2020
Genetics & Genomics
Drug-Resistant Microbes Persist in Hospitals After Deep Cleaning
NOV 08, 2020
Drug-Resistant Microbes Persist in Hospitals After Deep Cleaning
Researchers have found that drug-resistant bacteria can hang around even after deep cleaning. They used genome sequencin ...
NOV 23, 2020
Microbiology
Drug Resistance in Tuberculosis Involves a Unique Mechanism
NOV 23, 2020
Drug Resistance in Tuberculosis Involves a Unique Mechanism
The pathogenic bacterium that causes tuberculosis, Mycobacterium tuberculosis, does not multiply quickly, so researchers ...
Loading Comments...