APR 01, 2018 08:55 PM PDT

How Stem Cells Become Heart Cells

WRITTEN BY: Carmen Leitch

Scientists have identified a mechanism that turns stem cells into heart muscle cells: cardiomyocytes; this work is a significant finding that could aid in the development of new treatments for problems in the heart. Along with colleagues in India, scientists at A*STAR in Singapore have learned some new molecular and genetic details behind how stem cells, which can turn into any kind of cell in the body, become cardiomyocytes. Their findings have been published in Scientific Reports.

Histopathology of acute myocardial infarction, showing coagulative necrosis of cardiomyocytes. / Credit: Wikimedia Commons

"The effort is underway globally to find ways to differentiate these stem cells into beating functional heart muscle cells so that they can be used for cell-based therapies to treat structural abnormalities," said Prabha Sampath, from the A*STAR Institute of Medical Biology.

In this work, a technique called transcriptome profiling was utilized, in which the genes that are turned on, or expressing, in a cell are quantified. The scientists wanted to know which genes were activated when human embryonic stem cells are turning into heart cells. 

They found that the expression of two genes, NR2F2 and EZH2, had elevated expression levels as differentiation was occurring. These genes encode for proteins that control the activity of OCT4, another gene that acts to keep stem cells in the undifferentiated state.

"NR2F2 recruits EZH2 to gene OCT4, and potentially suppresses its expression, propelling the cells towards differentiation," Sampath explained. "With the down-regulation of this gene, the cells start differentiating into cardiomyocytes."

While the NR2F2 protein has not been connected to cardiac differentiation before, it is known that mutations in the NR2F2 gene can cause the development of one kind of congenital heart defect. 

"While it's unlikely to be the only mechanism involved in the differentiation of stem cells into cardiac cells, it's an important step in the process," said Mohsin Bin Bashir, also of the Institute of Medical Biology. "If we can understand how a stem cell becomes a cardiomyocyte, we have more chance of creating these cells in a controlled fashion."

In may be possible to use this newly found process for reprogramming adult stem cells. In such a procedure, normal cells get harvested from a patient, then modified, so they go back to their stem cell state. Then they can differentiate into the cell type that is needed for treatment.

"You can convert them into cardiomyocytes and put them back into the patient, and one of the advantages with that [process is that] there would be no immune rejection because these cells come from the patient themselves," Bashir noted.

Learn more about how stem cells can be used for heart therapeutics from the Mayo Clinic video.

Sources: Phys.org via A*STAR, Scientific Reports

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
A DNA 'Stitch' as a Therapy for Duchenne Muscular Dystrophy
DMD is a genetic disorder that causes degeneration in muscles. Now there may be a treatment for as many as 47% of patients....
DEC 14, 2019
Neuroscience
DEC 14, 2019
Rabbit Study Holds Answer for Why Women Orgasm
Despite our increasing knowledge of the human brain, evolution and general biological processes, one thing has remained a mystery: why females orgasm. Now,...
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
Genetic Variations Connected to Severe Forms of Multiple Sclerosis
Scientists are learning more about the genetic factors underlying MS, which is a highly variable disease....
DEC 14, 2019
Drug Discovery & Development
DEC 14, 2019
Therapeutic Targets Inflammation Associated with Genetic Heart Disease
Often times when young athletes collapse during the game it is due to sudden cardiac death as a result of the inherited arrhythmogenic cardiomyopathy (ACM)...
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
Neurotoxin Cadmium and Gene Combo Accelerates Cognitive Decline
Findings from a new animal study suggest that exposure to cadmium, a neurotoxin, leads to accelerated cognitive impairment. Males with a genetic risk facto...
DEC 14, 2019
Genetics & Genomics
DEC 14, 2019
The Cause of a New Autoimmune Disease is Discovered
Researchers have discovered a new autoinflammatory disease, which they have called CRIA (cleavage-resistant RIPK1-induced autoinflammatory) syndrome....
Loading Comments...