APR 03, 2018 07:54 PM PDT

Beneficial Genetic Mutations Could Help Patients

WRITTEN BY: Carmen Leitch

New research findings could help develop treatments for a variety of blood disorders, like sickle cell anemia. CRISPR gene editing was used in a study led by UNSW Sydney, in which beneficial mutations were introduced to blood cells, increasing the production of a molecule called fetal hemoglobin. These 'good' mutations are naturally carried by some people, and this work solves long-standing questions about how they impact gene expression. It was reported in Nature Genetics.

A sickle cell / Credit: Pixnio

"Our new approach can be seen as a forerunner to 'organic gene therapy' for a range of common inherited blood disorders including beta-thalassemia and sickle cell anemia," said study leader Professor Merlin Crossley, Deputy Vice-Chancellor Academic of UNSW. "It is organic because no new DNA is introduced into the cells; rather we engineer in naturally occurring, benign mutations that are known to be beneficial to people with these conditions. It should prove to be a safe and effective therapy, although more research would be needed to scale the processes up into effective treatments."

In the sickle cell anemia and thalassemia disorders, patients have a problem with their hemoglobin molecule, which has a critical role in our bodies. It gathers oxygen up from the lungs and moves it through the blood to other areas. Those with such blood diseases need transfusions and medications their entire lives. However, some also have mutations in their genome that offset the disease, mutations that activate fetal hemoglobin and compensate for the loss of their adult hemoglobin molecule.

"The fetal hemoglobin gene is naturally silenced after birth. For 50 years, researchers have been competing furiously to find out how it is switched off, so it can be turned back on," said Crossley. "Our study, which is the culmination of many years of work, solves that mystery.”

The researchers identified the mechanism underlying the rescue. “We have found that two genes, called BCL11A and ZBTB7A, switch off the fetal hemoglobin gene by binding directly to it. And the beneficial mutations work by disrupting the two sites where these two genes bind,” continued Crossley.

"This landmark finding not only contributes to our appreciation of how these globin genes are regulated. It means we can now shift our focus to developing therapies for these genetic diseases using CRISPR to target precise changes in the genome," added Crossley.

The most common genetic disorders in the world that affect one gene are beta-thalassemia and sickle cell anemia. The globin genes have also been well-characterized. Now this work can bring the knowledge about the gene to benefit patients.

 

Sources: AAAS/Eurekalert! Via UNSW, Nature Genetics

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 30, 2018
Genetics & Genomics
AUG 30, 2018
Genetic Changes can Help Diagnose Childhood Cancers Far Earlier
New research has revealed genetic rearrangements that happen far before bone cancer starts growing in children....
SEP 06, 2018
Genetics & Genomics
SEP 06, 2018
The Human Genome may Contain 20% Fewer Genes Than Thought
The human genome was once estimated to contain 50,000 to 90,000 genes; that number has been revised steadily downward....
SEP 10, 2018
Microbiology
SEP 10, 2018
As Microbes Jump From Animals to Humans, Their Genes Change
We share the world with an untold number of microorganisms, most of which pose no threat to us; but some microbes can be very dangerous if they infect us....
SEP 28, 2018
Genetics & Genomics
SEP 28, 2018
How Genes Changed in Domesticated Foxes
Over fifty years ago, scientists in Russia began to selectively breed silver foxes to replicate domestication....
OCT 08, 2018
Genetics & Genomics
OCT 08, 2018
Neanderthal DNA Helps us Fight Viruses
The last Neanderthals died around 40,000 years ago, but not before breeding with other humans that were starting to move around the globe....
NOV 16, 2018
Genetics & Genomics
NOV 16, 2018
Using Light to Control Organ Development
Optogenetics combined genetic engineering with optics to create a way to control cellular behaviors with light....
Loading Comments...