APR 09, 2018 07:21 PM PDT

Tracing the Cells of an Animal to Their Origins

WRITTEN BY: Carmen Leitch

The many diverse parts of organisms are made up of different cell types, which have their own functions and characteristics. Relatively recent innovations have opened up single cells for analysis, and new work has investigated the ancestry behind individual cell types. Scientists have a host of questions they want to pursue.

The researchers were able to observe under the microscope that CRISPR-Cas9 did its work and produced the scars in the genome - because then the red glow of the fish embryos faded. / Credit: Microscopic image: Junker Lab, MDC

"Whenever we use such a technology to examine an organ or an organism, we find not only familiar cell types, but also unknown and rare ones," noted Dr. Jan Philipp Junker, head of the Quantitative Developmental Biology research group at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC). "The next question is obvious: Where do these different types come from?" Junker's lab has published a report in Nature Genetics detailing a technique called LINNAEUS; it allows scientists to learn the lineage and type of every cell in an organism.

"We want to understand the flexibility with which organisms develop," Junker said. 

LINNAEUS uses scars in DNA, which act as a kind of barcode that allows the cells to be traced through their development. The scars are generated with the CRISPR/Cas9 gene-editing system (outlined in the video), which in this case is targeting a gene for red fluorescent protein (RFP), so the edits are harmless to the fish and they develop normally.

"CRISPR always makes a cut at an exact point. But the cells have no more than 15 minutes to repair before the next cell division takes place," Junker explained. "Patching must be done quickly, so the chromosome pieces are sort of glued together. This is where mistakes happen. The scars in the DNA are of random length and their exact position also varies." After scarring, any daughter cells inherit the scar, so cells with the same ancestor are easy to identify.

The investigators had to account for some of the difficulties inherent in their process. The massive amount of data was sure to include erroneous sequences. “If the same scar sequence is created in both heart and brain cells, one might mistakenly assume that they have a common ancestor," Junker says. So we had to know which sequences we couldn't trust and filter them out." Additionally, not all scars in a cell can be found, said a lead author of the study, bioinformatician Bastiaan Spanjaard. "So we have developed a method capable of bridging gaps in the data that enables us to construct lineage trees."

The analysis produced colorful charts that show how cells branch off, each color representing a different cell type. The large dataset can be seen in detail by zooming in.

Technologies such as RNA sequencing show which genes are translated in each individual cell. Using similar expression profiles, they were sorted by colour. The black lines symbolize a common origin of the cells. From these data, the researchers traced the cell lineages. / Credit: Picture: Junker Lab, MDC

"In the heart, for instance, there are two cell types that are barely distinguishable. But the lineage trees show that their development branches off in different directions very early on," said Junker. "We next want to see where these cell types occur in fish hearts. This often provides a first indication of what function they serve." 

The researchers in Junker’s lab use zebrafish, but they may extend their studies to human organoids. This work will help us understand the effect of mutations that occur at different times or places.

Sources: AAAS/Eurekalert! Via MDC, Nature Biotechnnology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 02, 2018
Cell & Molecular Biology
SEP 02, 2018
Cancer Cell Lines can Evolve in the Lab
New research shows that scientists have to take steps to verify the identity of the cell lines they grow....
SEP 11, 2018
SEP 11, 2018
Oops! I Broke My DNA
Innate Immune System, DNA Damage and Repair...
SEP 12, 2018
SEP 12, 2018
Researchers ID a Link Between a Bacterial Strain and Gastric Cancer
Helicobacter pylori is a bacterium that causes stomach ulcers, and can lead to gastric cancer....
SEP 20, 2018
Genetics & Genomics
SEP 20, 2018
Liquid Phase Separation may Play a Role in Cancer
Not all liquids mix, like oil and water; the phenomenon is called liquid-liquid phase separation. We're learning more about its role in cells....
OCT 05, 2018
OCT 05, 2018
Reducing Pollution with Engineered Bacteria
A varsity of creative strategies have been proposed as solutions to climate change, from practical to outlandish....
OCT 11, 2018
OCT 11, 2018
An Inexpensive Kit Teaches Kids About Molecular Biology
Biology is advancing at a rapid pace. Students will be ready for those advances if they can learn about cutting-edge concepts at an early age....
Loading Comments...