APR 15, 2015 02:26 PM PDT

Mountain Gorilla Genome Study Provides Optimism About Population Numbers

WRITTEN BY: Ilene Schneider
An international research project to sequence whole genomes from mountain gorillas has given scientists and conservationists new insight into the impact of population decline on these critically endangered apes. While mountain gorillas are extensively inbred and at risk of extinction, research published today in Science finds more to be optimistic about in their genomes than expected.
Baby Gorilla
"Mountain gorillas are among the most intensively studied primates in the wild, but this is the first in-depth, whole-genome analysis," said Dr. Chris Tyler-Smith from the Wellcome Trust Sanger Institute. "Three years on from sequencing the gorilla reference genome, we can now compare the genomes of all gorilla populations, including the critically endangered mountain gorilla, and begin to understand their similarities and differences, and the genetic impact of inbreeding."

The number of mountain gorillas living in the Virunga volcanic mountain range on the borders of Rwanda, Uganda and the Democratic Republic of Congo plummeted to approximately 253 in 1981 as a result of habitat destruction and hunting. Since then, conservation efforts led by the Rwanda Development Board and conservation organizations such as the Gorilla Doctors, and supported by tourists keen to see the gorillas, have bolstered numbers to approximately 480 among the Virunga population.

Researchers interested to learn how such a small gene pool would affect the mountain gorillas were surprised to find that many harmful genetic variations had been removed from the population through inbreeding, and that mountain gorillas are genetically adapting to surviving in small populations.

"This new understanding of genetic diversity and demographic history among gorilla populations provides us with valuable insight into how apes and humans, their closely related cousins, adapt genetically to living in small populations," said Dr. Aylwyn Scally, from the Department of Genetics at the University of Cambridge. "In these data we can observe the process by which genomes are purged of severely deleterious mutations by a small population size."

Using blood samples collected over several years by the Rwanda Development Board, The Institut Congolese pour la Conservation du Nature and by Gorilla Doctors, which treats wild gorillas injured by snares, researchers were able to sequence the whole genomes of seven mountain gorillas for the first time. Previously, only easily obtainable but poor-quality DNA from fecal and hair samples have been analyzed at a handful of regions of the genome.

Scientists discovered that these mountain gorillas, along with eastern lowland gorillas, their closely related neighbors, were two to three times less genetically diverse than gorillas from larger groups in western regions of central Africa. While there are concerns that this low level of genetic diversity may make the mountain gorillas more vulnerable to environmental change and to disease, including cross-infectious strains of human viruses, the inbreeding has, in some ways, been genetically beneficial. Fewer harmful ‘loss-of-function' variants were found in the mountain gorilla population than in the more numerous western gorilla populations: these variants stop genes from working and can cause serious, often fatal, health conditions.

By analyzing the variations in each genome, the researchers also discovered that mountain gorillas have survived in small numbers for thousands of years. Using recently-developed methods, the researchers were able to determine how the size of the population has changed over the past million years. According to their calculations, the average population of mountain gorillas has numbered in the hunDr.eds for many thousands of years; far longer than previously thought.

"We worried that the Dr.amatic decline in the 1980s would be catastrophic for mountain gorillas in the long term, but our genetic analysis suggest that gorillas have been coping with small population sizes for thousands of years," said Dr. Yali Xue from the Sanger Institute. "While comparable levels of inbreeding contributed to the extinction of our relatives the Neanderthals, mountain gorillas may be more resilient. There is no reason why they should not flourish for thousands of years to come."

It is hoped that the detailed, whole-genome sequence data gathered through this research will aid conservation efforts. Now that a genome-wide map of genetic differences between populations is available, it will be possible to identify the origins of gorillas that have been illegally captured or killed. This will enable more gorillas to be returned to the wild and will make it easier to bring prosecutions against those who poach gorillas for souvenirs and bush meat.

Support for the research came from organizations including the Royal Society, the Wellcome Trust and the National Institutes of Health.

Source: University of Cambridge
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
DEC 09, 2019
Cell & Molecular Biology
DEC 09, 2019
Insight Into the Epigenetic Mechanisms Controlling Cellular Identity
Every cell type has to carefully control which genes are expressed, and new research has learned more about that process....
DEC 09, 2019
Cell & Molecular Biology
DEC 09, 2019
A New Theory About the Structure of DNA
Scientists have new ideas about how the helixes of the DNA molecule are linked together....
DEC 09, 2019
Genetics & Genomics
DEC 09, 2019
Breast Cancer Drug Increases Survival for Prostate Cancer Patients
A breast cancer drug is better at treating advanced prostate cancer in some men than current therapies, a clinical trial shows....
DEC 09, 2019
Genetics & Genomics
DEC 09, 2019
Genetic Variations Connected to Severe Forms of Multiple Sclerosis
Scientists are learning more about the genetic factors underlying MS, which is a highly variable disease....
DEC 09, 2019
Genetics & Genomics
DEC 09, 2019
Success in Treating Schizophrenia in Mice
Approximately 3.5 million people in the US have been diagnosed with schizophrenia. Although various therapies are available to treat and manage the illness...
DEC 09, 2019
Clinical & Molecular DX
DEC 09, 2019
A Revealing Look at Rare Disease Incidence
Being diagnosed with a rare disease can be especially terrifying for patients. After all, many of these diseases have no treatment options. This is because...
Loading Comments...