JUN 18, 2019 8:19 AM PDT

Scientists Identify Which Gut Bacteria Interfere With Parkinson's Treatment

WRITTEN BY: Tiffany Dazet

A new study from a team of Harvard scientists discovered one of the first distinct examples of how gut bacteria can interfere with a drug’s pathway through the body. Out of the trillions of possible culprits, the team was able to identify which bacteria degrade the drug and how to stop the interference.

The study, recently published in Science, focused on levodopa (L-dopa), which has been the primary treatment for Parkinson’s disease for the past 50 years. L-dopa relieves Parkinson’s symptoms by delivering dopamine to the brain. However, it is estimated that only about one to five percent of the drug actually reaches the brain.

When the L-dopa metabolizes outside the brain, the resulting dopamine causes side effects, including severe gastrointestinal distress and cardiac arrhythmias. In addition, patients are often given higher doses of the drug to combat symptoms, possibly intensifying these side effects. 

To increase the efficacy of L-dopa, a new drug to block the L-dopa metabolism—carbidopa—was introduced, and the combination of the pills seemed to help Parkinson’s patients. Although this solution exists, the research team wanted to dig deeper and discover the unexplained drug metabolism and reasons for efficacy variance between patients.

Using data from the Human Microbiome Project, the team was able to identify specific enzymes produced by two different bacterial species that work together to digest L-dopa in the human gut. Enterococcus faecalis absorbs L-dopa and converts it to dopamine while Eggerthella lenta converts dopamine into meta-tyramine, which may be responsible for L-dopa’s side effects.

In a statement from Harvard’s Department of Chemistry and Chemical Biology, lead author Professor Emily Balskus stated that “all of this suggests that gut microbes may contribute to the dramatic variability that is observed in side effects and efficacy between different patients taking L-dopa.”

Using mice, the research team also identified a small molecule—alpha-fluoromethyltyrosine (AFMT)—that could block this particular metabolic pathway, thereby increasing the efficacy of L-dopa in Parkinson’s patients. Although this may result in Parkinson’s patients requiring a third drug for treatment, Balskus stated that their discovery “opens up the door to the possibility of developing a new class of therapeutics to improve patient response to L-dopa—that would be drugs targeting gut microbe metabolism in addition to targeting host metabolism.”

Sources: Harvard, Science Magazine, New Scientist

About the Author
  • Tiffany grew up in Southern California, where she attended San Diego State University. She graduated with a degree in Biology with a marine emphasis, thanks to her love of the ocean and wildlife. With 13 years of science writing under her belt, she now works as a freelance writer in the Pacific Northwest.
You May Also Like
NOV 08, 2020
Microbiology
Seasonal Illness - Is the Sun Involved?
NOV 08, 2020
Seasonal Illness - Is the Sun Involved?
There is a cold and flu season, and many researchers have tried to explain why the viruses that cause these illnesses te ...
NOV 09, 2020
Microbiology
Fighting COVID-19 with Help From Llamas
NOV 09, 2020
Fighting COVID-19 with Help From Llamas
Camelids, which include llamas, alpacas and camels have immune systems that generate two kinds of antibodies when confro ...
NOV 10, 2020
Clinical & Molecular DX
No More False-Negatives: An Ultrasensitive COVID Test
NOV 10, 2020
No More False-Negatives: An Ultrasensitive COVID Test
A team of researchers has improved upon the current diagnostic methodology for COVID-19, making it significantly more ac ...
NOV 12, 2020
Immunology
Anti-bodies against a sugar present in meat and dairy products can increase the risk of Colorectal Cancer
NOV 12, 2020
Anti-bodies against a sugar present in meat and dairy products can increase the risk of Colorectal Cancer
Nutrition is essential to health; what we eat in our daily diet affects our overall health condition and what diseases w ...
NOV 16, 2020
Immunology
Measles Is Back and COVID Isn't Helping
NOV 16, 2020
Measles Is Back and COVID Isn't Helping
Measles is a highly contagious and airborne viral disease. There is no treatment besides supportive care once a person b ...
NOV 18, 2020
Health & Medicine
Rising Temperatures May Increase Tick-Borne Diseases in Humans
NOV 18, 2020
Rising Temperatures May Increase Tick-Borne Diseases in Humans
New research presented at the Annual Meeting of the American Society of Tropical Medicine and Hygiene warns that climate ...
Loading Comments...