OCT 21, 2016 5:04 AM PDT

International Team Unveils First Atomic-Level Image of the Human ‘Marijuana Receptor'

International Team Unveils First Atomic-Level Image of the Human ‘Marijuana Receptor'

JUPITER, FL — October 20, 2016 – In a discovery that advances the understanding of how marijuana works in the human body, an international group of scientists, including those from the Florida campus of The Scripps Research Institute (TSRI), have for the first time created a three-dimensional atomic-level image of the molecular structure activated by tetrahydrocannabinol (THC), the active chemical in marijuana.

The new insights into the human cannabinoid receptor 1 (CB1) will provide an essential tool for understanding why some molecules related to THC have unexpectedly complex and sometimes harmful effects. The findings also have the potential to guide drug design for pain, inflammation, obesity, fibrosis and other indications.

The new study, published by the journal Cell, was led by a quartet of scientists: TSRI’s Laura Bohn, Northwest University’s Alexandros Makriyannis, Shanghai Tech University’s Zhi-Jie Liu and Shanghai Tech and University of Southern California’s Raymond C. Stevens.

At the beginning of the study, the team struggled to produce a crystal form—needed to obtain data to recreate the high-resolution structure—of the receptor bound with AM6538, a stabilizing a molecule that blocks the receptor’s action.

“The CB1 receptor proved as challenging for crystallization as it did for understanding its functional regulation and signaling,” said Bohn, who is a professor in TSRI’s Department of Molecular Therapeutics.

When the scientists succeeded in crystalizing the receptor and collecting the data, the structure of the cannabinoid receptor complex revealed an expansive and complicated binding pocket network consisting of multiple sub-pockets and channels to various regions of the receptor.

Cannabinoid receptors are part of a large class of receptors known as G protein-coupled receptors (GPCR), which account for about 40 percent of all prescription pharmaceuticals on the market and play key roles in many physiological functions. When an outside substance binds to a GPCR, it activates a G protein inside the cell to release components and create a specific cellular response.

AM6538, is an antagonist/inverse agonist that binds tightly to the receptor; it has a long half-life, making it potentially useful as a treatment of addiction disorders.

“As marijuana continues to become more common in society, it is critical that we understand how it works in the human body,” said Liu, who is professor and deputy director of the iHuman Institute of Shanghai Tech and is also affiliated with the Chinese Academy of Sciences.

The first author of the Cell study, “Crystal Structure of the Human Cannabinoid Receptor CB1,” is Tian Hua of Shanghai Tech University and the Chinese Academy of Sciences (Beijing).

In addition to Stevens, Liu, Bohn, Makriyannis and Hua, other authors of the study are Mengchen Pu, Lu Qu, Yiran Wu, Suwen Zhao, Wenqing Shui, Shanshan Li of iHuman Institute at ShanghaiTech University; Nikolai Zvonok, Anisha Korde, Kiran Vemuri of Northeastern University; Gye Won Han of University of Southern California; Robert Laprairie, Edward Stahl, and Jo-Hao Ho (graduate student) of TSRI; Irina Kufareva of University of California, San Diego; and Michael Hanson of the GPCR Consortium.  

The study was supported by the Ministry of Science and Technology of China (grants 2014CB910400 and 2015CB910104), National Nature Science Foundation of China (grant 31330019), National Institutes of Health (grants P01DA009158, R37DA023142 and R01AI118985), the National Science Foundation, Shanghai Municipal Government, ShanghaiTech University and the GPCR Consortium.

This article was originally published on Scripps.edu.
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
You May Also Like
OCT 07, 2021
Drug Discovery & Development
Extended approval for a drug to treat children living with HIV
OCT 07, 2021
Extended approval for a drug to treat children living with HIV
On Monday October 4th, ViiV Healthcare announced that it had submitted an application to the United States Food and Drug ...
OCT 10, 2021
Technology
Food and the Microbiome: Using Bioinformation Tools To Personalize Diet and Nutrition Plans
OCT 10, 2021
Food and the Microbiome: Using Bioinformation Tools To Personalize Diet and Nutrition Plans
According to a new study published in Nature Communications, researchers have developed a predictive bioinformatic syste ...
OCT 10, 2021
Cell & Molecular Biology
DNA Can Reveal Treatments for Lung Cancer in 'Never-Smoked' Patients
OCT 10, 2021
DNA Can Reveal Treatments for Lung Cancer in 'Never-Smoked' Patients
There is a well-known causal connection between smoking and lung cancer, and most research on lung cancer has been focus ...
OCT 10, 2021
Technology
Wearable Patch Creates Electricity From Simple Body Motion
OCT 10, 2021
Wearable Patch Creates Electricity From Simple Body Motion
Wearable technologies have become increasingly popular in recent years, especially in the medical field. New technologie ...
OCT 13, 2021
Cardiology
Low-Dose Aspirin as Preventive Medication? Recommendations Have Changed
OCT 13, 2021
Low-Dose Aspirin as Preventive Medication? Recommendations Have Changed
Heart disease is the primary cause of death in the United States. It's estimated that every year, about 605,000 American ...
OCT 17, 2021
Genetics & Genomics
Genes That Cause Disease Seem to Prevent Beneficial Adaptations
OCT 17, 2021
Genes That Cause Disease Seem to Prevent Beneficial Adaptations
A new study has used computational tools to investigate evolution in the human genome that's occurred over the past 50,0 ...
Loading Comments...