AUG 04, 2019 4:41 PM PDT

New Research In Reversing Deafness

WRITTEN BY: Amanda Mikyska

Hair cells inside the human ear are responsible for sensing and relaying sound to the brain.  In all mammals except humans, these cells can regenerate if damaged.  In humans, when a hair cell dies because of damage from loud noises, a virus, or genetic mutation, the loss is permanent.    

Scientists at Johns Hopkins University are now investigating the molecular signaling pathways of hair cell differentiation and growth, to find a way to regenerate damaged hair cells.  This would help people with deafness regain hearing, regardless of the cause.

Undamaged cochlear hair cells vs. damaged cochlear hair cells.

 

Previously, scientist knew about two genes, HEY1 and HEY2, which repress the differentiation of precursor hair cells into functional hair cells.  Without the HEY1 and HEY2 genes, cells prematurally differentiate and do not fully grow.  Interestingly, the expression of these two genes also expresses small amounts of "inhibitor of differentiation" (ID) proteins.  An accumulation of ID proteins, however, interfere with the ability of repressors to bind to the DNA.  When the repressor proteins cannot bind to DNA, the cells differentiate into audio-sensing hair cells, in an organized spiral.  The slow accumulation of ID proteins is a biological timer that results in the precise birth of audio-sensing cells.  

Most recently, scientists at Johns Hopkins University found that the proteins responsible for balancing the timing of differentiation are Activin A, a member of the cytokinin family, and  Follistatin (FST).  Precursor hair cells grow from the outside of the cochlear spiral to the inside.  Along the way, FST is expressed and represses differentiation of these precursor hair cells.  Activin A signals differentiation and is expressed in the reverse direction, beginning with cells at the center of the cochlear spiral.   

At the moment, there is no way to engineer hair cells to regenerate.  However, with more research on the underlying molecular controls, a therapy for hearing loss draws closer.   
 

 

Sources: Prajapati-DiNubila

About the Author
  • Amanda graduated from the University of Massachusetts Boston with a degree in Biology. After working in research on creating biochemicals from genetically engineered yeast, she started freelance science writing while traveling the world. Now, Amanda is a Lab Manager and Research Assistant at the the University of Central Florida, studying the molecular phylogeny of parasitic wasps. She writes about the latest research in Neuroscience, Genetics & Genomics, and Immunology. Interested in working on solutions for food/water security, sustainable fuel, and sustainable farming. Amanda is an avid skier, podcast listener, and has run two triathlons.
You May Also Like
APR 15, 2020
Immunology
How Malaria Protects Itself from the Immune System
APR 15, 2020
How Malaria Protects Itself from the Immune System
A specific parasitic species causes the most deaths from malaria: Plasmodium falciparum. This parasite does so by avoidi ...
APR 16, 2020
Health & Medicine
Structural Basis of Receptor Recognition by SARS-CoV-2
APR 16, 2020
Structural Basis of Receptor Recognition by SARS-CoV-2
As mortality and infection rates rise globally, it appears that SARS-CoV-2, the virus responsible for the COVID-19 pande ...
JUN 10, 2020
Immunology
Natural Killer Cells with "Memory" to Target Hepatitis B
JUN 10, 2020
Natural Killer Cells with "Memory" to Target Hepatitis B
An immune cell type thought to be restricted to the general, first response to pathogenic invaders may actually have som ...
JUL 14, 2020
Immunology
Itsy Bitsy Nanobodies to Defeat the Big Bad Coronavirus
JUL 14, 2020
Itsy Bitsy Nanobodies to Defeat the Big Bad Coronavirus
Scientists are working on developing an arsenal of nano-sized weapons in the war against COVID-19. These molecules, call ...
JUL 15, 2020
Immunology
Immune Memory to Thwart Recurring Cancer
JUL 15, 2020
Immune Memory to Thwart Recurring Cancer
Preventing cancer from returning in the body is an integral part of any anti-cancer treatment plan. New discoveries from ...
JUL 28, 2020
Immunology
Neonatal Origins of Chronic Inflammatory Disease
JUL 28, 2020
Neonatal Origins of Chronic Inflammatory Disease
From birth, our genes write the story of our lives. For many people who develop chronic immune and inflammatory diseases ...
Loading Comments...