AUG 04, 2019 4:41 PM PDT

New Research In Reversing Deafness

WRITTEN BY: Amanda Mikyska

Hair cells inside the human ear are responsible for sensing and relaying sound to the brain.  In all mammals except humans, these cells can regenerate if damaged.  In humans, when a hair cell dies because of damage from loud noises, a virus, or genetic mutation, the loss is permanent.    

Scientists at Johns Hopkins University are now investigating the molecular signaling pathways of hair cell differentiation and growth, to find a way to regenerate damaged hair cells.  This would help people with deafness regain hearing, regardless of the cause.

Undamaged cochlear hair cells vs. damaged cochlear hair cells.

 

Previously, scientist knew about two genes, HEY1 and HEY2, which repress the differentiation of precursor hair cells into functional hair cells.  Without the HEY1 and HEY2 genes, cells prematurally differentiate and do not fully grow.  Interestingly, the expression of these two genes also expresses small amounts of "inhibitor of differentiation" (ID) proteins.  An accumulation of ID proteins, however, interfere with the ability of repressors to bind to the DNA.  When the repressor proteins cannot bind to DNA, the cells differentiate into audio-sensing hair cells, in an organized spiral.  The slow accumulation of ID proteins is a biological timer that results in the precise birth of audio-sensing cells.  

Most recently, scientists at Johns Hopkins University found that the proteins responsible for balancing the timing of differentiation are Activin A, a member of the cytokinin family, and  Follistatin (FST).  Precursor hair cells grow from the outside of the cochlear spiral to the inside.  Along the way, FST is expressed and represses differentiation of these precursor hair cells.  Activin A signals differentiation and is expressed in the reverse direction, beginning with cells at the center of the cochlear spiral.   

At the moment, there is no way to engineer hair cells to regenerate.  However, with more research on the underlying molecular controls, a therapy for hearing loss draws closer.   
 

 

Sources: Prajapati-DiNubila

About the Author
Bachelor's of Science, Biology (2019)
Amanda graduated from the University of Massachusetts Boston with a degree in Biology. After working in research on creating biochemicals from genetically engineered yeast, she started freelance science writing while traveling the world. Now, Amanda is a Lab Manager and Research Assistant at the the University of Central Florida, studying the molecular phylogeny of parasitic wasps. She writes about the latest research in Neuroscience, Genetics & Genomics, and Immunology. Interested in working on solutions for food/water security, sustainable fuel, and sustainable farming. Amanda is an avid skier, podcast listener, and has run two triathlons.
You May Also Like
AUG 28, 2022
Immunology
Understanding When Recovery is Going Well, or Not
AUG 28, 2022
Understanding When Recovery is Going Well, or Not
When there is illness or injury, there is inflammation; immune molecules and cells race to the site of infection or tiss ...
SEP 06, 2022
Genetics & Genomics
Reduced A-to-I Editing in RNA Linked to Autoimmune Disorder Risk
SEP 06, 2022
Reduced A-to-I Editing in RNA Linked to Autoimmune Disorder Risk
The genome contains the sequences for protein-coding genes, but before those seuquences are translated into protein, the ...
SEP 04, 2022
Drug Discovery & Development
Brief Exposure to Cancer Drug Produces Anti-aging Effects in Mice
SEP 04, 2022
Brief Exposure to Cancer Drug Produces Anti-aging Effects in Mice
Brief exposure to rapamycin, a promising anti-aging drug, may have similar effects on health and lifespan as longer trea ...
OCT 16, 2022
Microbiology
How Cells Neutralize Hepatitis B Virus
OCT 16, 2022
How Cells Neutralize Hepatitis B Virus
WHO has estimated that there are almost 300 million people with chronic hepatitis B infections, and there are around 1.5 ...
OCT 31, 2022
Genetics & Genomics
Ancient Viral DNA in Our Genome Has a Protective Function
OCT 31, 2022
Ancient Viral DNA in Our Genome Has a Protective Function
There is viral DNA in the human genome, and each instance traces back to an ancestor who was infected with a retrovirus. ...
NOV 14, 2022
Immunology
A Probiotic 'Backpack' Could Treat Inflammatory Bowel Disease
NOV 14, 2022
A Probiotic 'Backpack' Could Treat Inflammatory Bowel Disease
There are many types of microorganisms in the human gastrointestinal tract, and many of them perform important functions ...
Loading Comments...