JUN 04, 2020 6:45 AM PDT

Tissue Stiffness Regulates Immune Responses

WRITTEN BY: Tara Fernandez

Cells are remarkably sensitive to the mechanical properties of their environment, changing their behavior as a result of physical forces exerted by the surrounding tissues. Over the last 20 years, scientists have uncovered that this phenomenon, known as mechanosensing, dictates a plethora of cellular responses, from cell division and differentiation to the activation of the immune system.

After a sprain, for example, joints swell and become stiff and mechanically rigid. How the physics of this tissue rigidity influences the dynamics of immune cells such as T and B lymphocytes, however, has remained unknown.

A team of researchers at UCLA may have found a missing piece of this puzzle: a molecule called yes-associated protein, or YAP. Through a series of experiments using genetically-modified mice, they found that T cells use YAP as a sensor of tissue rigidity, responding to these mechanical cues by either accelerating inflammation or hitting the brakes on it. 

The study’s senior author, Manish J. Butte explains, "In cases of both autoimmune activity and fighting off infection, YAP acts as an accelerator of the immune response in stiff tissues, and as a brake when there is mechanical softness." Specifically, YAP is able to access the metabolic control panel of T cells, flicking the switch for increased nutrient uptake to cope with a spike in energy requirements upon sensing tissue rigidity.

This new paradigm of immune system regulation has significant implications on future therapeutic strategies for diseases that have an immune component: autoimmune diseases, chronic infections, and some forms of cancer. 

"This is a whole new pathway that can be targeted to drive up immune responses in order to better fight infections, or slow down immune activity in conditions such as diabetes," said Butte. YAP-driven pathways are a prime target for potential drug targets and the subject of future research.

In follow up studies, Butte and colleagues plan to investigate whether YAP’s molecular pathways could be leveraged to treat mechanically rigid tumors, such as pancreatic and breast cancers. The team hypothesizes that YAP’s keen ability to sense tissue stiffness could be leveraged to amplify anti-tumor immune responses.


Sources: News Medical Life Sciences, Journal of Experimental Medicine.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
JUL 16, 2020
Immunology
Cancer Vaccine Charges Toward the Clinic
JUL 16, 2020
Cancer Vaccine Charges Toward the Clinic
Kristen Radford, a professor at Australia’s University of Queensland is among a scientific research team developin ...
JUL 17, 2020
Drug Discovery & Development
Could Low-Dose Radiation Therapy Treat COVID-19?
JUL 17, 2020
Could Low-Dose Radiation Therapy Treat COVID-19?
Research from a century ago points towards the potential of low-dose radiation therapy (LDRT) for treating pneumonia. Ev ...
JUL 27, 2020
Cell & Molecular Biology
White Blood Cells Are Essential to the Developing Brain
JUL 27, 2020
White Blood Cells Are Essential to the Developing Brain
The brain is protected by a protective shield called the blood-brain barrier, which only allows certain things to pass t ...
JUL 29, 2020
Drug Discovery & Development
Will We Have a COVID-19 Vaccine by Year-End?
JUL 29, 2020
Will We Have a COVID-19 Vaccine by Year-End?
This week, pharmaceutical companies Moderna and Pfizer launched giant Phase III 30,000-subject trials for their COVID-19 ...
AUG 04, 2020
Microbiology
Why the Brain Parasite You May Carry Isn't a Problem
AUG 04, 2020
Why the Brain Parasite You May Carry Isn't a Problem
Toxoplasma gondii is a parasite transmitted by cats and contaminated meat, and it's thought that over 30 million America ...
SEP 23, 2020
Immunology
Gene That Fuels Antibody Factories Discovered
SEP 23, 2020
Gene That Fuels Antibody Factories Discovered
Antibodies are Y-shaped proteins that play a central role in the immune system’s arsenal of germ-busting weapons. ...
Loading Comments...