DEC 10, 2020 6:00 AM PST

Drug Turns Back the Clock in Aged Brains

WRITTEN BY: Tara Fernandez

When faced with stressful stimuli — anything from oxygen or nutrient deprivation to viral infections — cells have in-built safety mechanisms to ensure their survival. This elaborate series of biochemical events is known as the integrated stress response. Once initiated, a cell in this state shuts down its protein production machinery. 

The integrated stress response is of particular interest to neuroscientists as these physiological safety switches have been found to be turned on in neural cells affected by traumatic brain injury, aging, and neurodegenerative disease. The question is — what if they could reset these safety switches, turning them back off again? Does this mean the cognitive impairment associated with these conditions is not as permanent as we once thought?

Scientists have made the exciting discovery that a recently-discovered drug is indeed capable of kickstarting neural cells in standby mode, getting their protein synthesis systems back online, and most promisingly, restoring cognitive function. 

The drug, called ISRIB (integrated stress response inhibitor), is a product of studies by investigators at UCSF. Earlier experiments that involved administering ISRIB treatment to mice with traumatic brain injuries showed spectacular results: normal brain function was restored in a matter of hours.

"We've seen how ISRIB restores cognition in animals with traumatic brain injury, which in many ways is like a sped-up version of age-related cognitive decline," commented study lead Susanna Rosi, professor of Neurological Surgery at UCSF. "It may seem like a crazy idea, but asking whether the drug could reverse symptoms of aging itself was just a logical next step."

 

 

In their latest study, Rosi and colleagues were interested in ISRIB’s potential to reverse cognitive impairment associated with aging. Two cohorts of mice (one aged and one young) were trained to navigate a maze — a cognitive task much easier for the younger mice to handle. When given a daily dose of ISRIB, however, the older mice were able to keep up with their youthful counterparts, outperforming other elderly mice who did not receive the medication. All this with no observable side effects.

Taking a closer look at the mechanism behind this boost of cognitive power, the investigators identified two key pathways that ISRIB improved: neurological activity in the hippocampus and reducing the activity of inflammatory immune cells in the brain. T cells are particularly susceptible to dysfunction as a result of aging, which has been linked to the brain’s elevated inflammatory state in conditions such as Alzheimer’s. 

"This was very exciting to me because we know that aging has a profound and persistent effect on T cells and that these changes can affect brain function in the hippocampus," said Rosi. 

"At the moment, this is just an interesting observation, but it gives us a very exciting set of biological puzzles to solve.”


Sources: eLife, Medical Xpress via USCF.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
SEP 16, 2020
Immunology
Depression, but Not Anxiety, Causes Inflammation and Metabolic Imbalances
SEP 16, 2020
Depression, but Not Anxiety, Causes Inflammation and Metabolic Imbalances
Scientists have discovered that depressed individuals show higher levels of inflammation as well as elevated fat concent ...
OCT 02, 2020
Immunology
Stop the Clot: A New Antibody Treatment for Thrombosis
OCT 02, 2020
Stop the Clot: A New Antibody Treatment for Thrombosis
Blood clotting helps stem the bleeding from a wound, suppressing blood loss and stopping pathogenic microorganisms from ...
NOV 05, 2020
Immunology
Immune cells from recovered COVID-19 patients can help protect immunocompromised individuals against infection
NOV 05, 2020
Immune cells from recovered COVID-19 patients can help protect immunocompromised individuals against infection
Our knowledge of COVID-19 or SARS-CoV-2 is increasing every day, with new research papers published continuously. Resear ...
NOV 09, 2020
Drug Discovery & Development
New Immunotherapy Shows Promise for MS
NOV 09, 2020
New Immunotherapy Shows Promise for MS
Researchers from Thomas Jefferson University in Philadelphia are studying an immunotherapy that has shown early pro ...
DEC 07, 2020
Cell & Molecular Biology
An Autoimmune Link to Heart Disease is ID'ed
DEC 07, 2020
An Autoimmune Link to Heart Disease is ID'ed
CNIC researchers have found that there is an autoimmune link to cardiovascular disease that may improve diagnostic and t ...
DEC 15, 2020
Immunology
Immunity-Boosting: Is It Real?
DEC 15, 2020
Immunity-Boosting: Is It Real?
The question everyone tries to find an answer to in the winter season is how can we improve our immunity to fight any in ...
Loading Comments...