FEB 16, 2021 8:00 AM PST

Hugs From Immune Cells Heal Muscle

WRITTEN BY: Tara Fernandez

Australian researchers have discovered a regenerative factor produced by immune cells that drives the repair and regeneration of damaged muscle tissue. The findings are a breakthrough for treating both injuries to skeletal muscles as well as muscle wasting disorders.

It’s a familiar feeling—that sharp pain, soreness, and long recovery periods after “pulling” a muscle. Here, the muscle has been stretched or contracted beyond its limits, resulting in the tearing of the muscle fibers. For patients with severe muscle wasting diseases such as muscular dystrophy, similar damage to muscle tissue occurs chronically throughout the body.

Muscles have in-built mechanisms to bounce back from wear and tear. Upon sensing injury, muscle stem cells are activated and come to the rescue, synthesizing a cocktail of biochemical factors that promote tissue growth and repair. Naturally, scientists hypothesized that stem cell therapies could help speed up healing in patients with diseased or injured muscle tissue. However, technical challenges have hampered the widespread use of such cell-based therapies—it’s not easy to grow, harvest, and deliver therapeutic quantities of stem cells.

What if instead of raising these stem cell “farms,” doctors could treat patients with potent, purified versions of the healing factors that stem cells produce? Exciting results from a study by Monash University’s Australian Regenerative Medicine Institute scientists show that this approach might work. 

The study, published in Nature, describes how scientists created a zebrafish model of tissue generation to explore the complex mechanisms that govern muscle healing. These fish have unique advantages over traditional mammalian animal models: 70 percent of their genes are shared with humans, they can be bred quickly and easily, and scientists can literally see what’s going on inside them during muscle regeneration (they’re transparent).

As lead scientist Peter Currie explains, the team observed that phagocytic immune cells called macrophages were amongst the first to the scene following tissue damage. “What we saw were macrophages literally cuddling the muscle stem cells, which then started to divide and proliferate.” 

“Once they started this process, the macrophage would move on and cuddle the next muscle stem cell, and pretty soon, the wound would heal,” Currie added.

Until now, it was thought that only two classes of macrophages were involved in muscle regeneration—the first responders that clear cellular debris and the construction crew that hangs around for more extended periods, facilitating the reconstruction of damaged tissue over the course of weeks and months.

As Currie and colleagues discovered, this process is far more complex. There are actually eight genetically-distinct macrophage populations in healing muscle, one of which is the type that “hugs” damaged muscle fibers. The team found that these affectionate interactions offer far more than just emotional support. These zebrafish macrophages were flooding injured tissues with a protein known as NAMPT, of which visfatin is the human equivalent. This was the biochemical trigger that set off stem cell-mediated regeneration.  Fascinatingly, the addition of purified NAMPT into the water of aquariums housing injured zebrafish activated their muscle stem cells and accelerated regeneration, bypassing the need for macrophage infiltration.

These were exciting results, but do similar processes occur during healing in mammals? Yes, say the researchers. Using mouse models of muscle wasting disease, the team demonstrated that hydrogel patches impregnated with NAMPT showed similar effects as those observed in zebrafish—damaged muscles were replaced with healthy tissues faster.

NAMPT and its homologs could soon go from fish tanks to pharmacies. According to the team, following the study's success, plans for clinical trial testing and commercializing this protein as a potential therapeutic are in the cards.

 

 

Sources: Nature, Monash University.


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
NOV 12, 2020
Immunology
Anti-bodies against a sugar present in meat and dairy products can increase the risk of Colorectal Cancer
NOV 12, 2020
Anti-bodies against a sugar present in meat and dairy products can increase the risk of Colorectal Cancer
Nutrition is essential to health; what we eat in our daily diet affects our overall health condition and what diseases w ...
NOV 24, 2020
Drug Discovery & Development
MMR Vaccine Shows Promise Against COVID-19
NOV 24, 2020
MMR Vaccine Shows Promise Against COVID-19
Researchers have found that a vaccine used for mumps, measles, and rubella (MMR) may be effective in protecting against ...
DEC 23, 2020
Immunology
COVID Survivors Stay Immune for at Least a Year
DEC 23, 2020
COVID Survivors Stay Immune for at Least a Year
Once the coronavirus enters the body, the immune system springs into action, producing antibodies that bind to and neutr ...
JAN 17, 2021
Immunology
A Single Dose Nanoparticle Vaccine for COVID-19
JAN 17, 2021
A Single Dose Nanoparticle Vaccine for COVID-19
In the race for finding the right vaccine for the COVID-19 pandemic, a new vaccine candidate emerged. Researchers at Sta ...
FEB 04, 2021
Immunology
Malarial Parasites Sneak in Wearing Flower-Shaped Disguises
FEB 04, 2021
Malarial Parasites Sneak in Wearing Flower-Shaped Disguises
Malaria is a disease caused by single-celled parasites from the Plasmodium group, transmitted to humans through infected ...
FEB 09, 2021
Immunology
Putting the Kibosh on HIV's Stealth Tactics
FEB 09, 2021
Putting the Kibosh on HIV's Stealth Tactics
The human immunodeficiency virus or HIV is always one step of the immune system, a tactic that makes it impossible to co ...
Loading Comments...