MAY 11, 2016 7:00 AM PDT

Could the brain's immune system fight Alzheimer's?

The brain’s immune system potentially could be harnessed to help clear amyloid plaques, which are a hallmark of Alzheimer’s disease.
 
"While we still need to fully understand the complexity and potential unintended consequences of this approach, it is clear that microglia play an important role in the removal of amyloid beta from the brain and may represent a novel approach to treating this disease," says M. Kerry O'Banion.

“This research confirms earlier observations that, when activated to fight inflammation, the brain’s immune system plays a role in the removal of amyloid beta,” says M. Kerry O’Banion, professor in the neurobiology and anatomy department at the University of Rochester.

“We have also demonstrated that the immune system can be manipulated in a manner that accelerates this process, potentially pointing to a new therapeutic approach to Alzheimer’s disease.”

Published in the Journal of Neuroinflammation, the findings are the culmination of years of investigation triggered when researchers made a surprising discovery while studying mouse models of Alzheimer’s disease.  They observed that amyloid beta plaques were being cleared in animals with chronic brain inflammation.

At the time, the mechanism by which the plaques were being removed was not clear.

Researchers eventually set their sights on microglia, native cells that serve as one of the central nervous system’s first lines of defense against infection and injury. Microglia are present throughout the brain and spinal cord, are constantly monitoring their environment, and can be switched on or activated to perform different functions including control inflammation, destroy pathogens, clean up the debris from dead or damaged cells, and seal off the site of an injury.

The researchers conducted a series of experiments to see if they could replicate the phenomenon of amyloid beta clearance absent brain inflammation. To do so, they had to “trick” the microglia into action by injecting a specific protein molecule, a cytokine, into the brain. Cytokines play important roles in cell signaling and the researchers were able to replicate the mechanisms that instruct the microglia to activate an anti-inflammatory response.

Once the microglia were mobilized in mouse models of Alzheimer’s disease, the researchers observed a more than 60 percent reduction in amyloid beta in the brain.

“While we still need to fully understand the complexity and potential unintended consequences of this approach, it is clear that microglia play an important role in the removal of amyloid beta from the brain and may represent a novel approach to treating this disease,” O’Banion says.

Other researches from the University of Rochester and from Boston University are coauthors of the study. The National Institute of Aging supported the work.

Source: University of Rochester

This article was originally posted on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
NOV 01, 2020
Cell & Molecular Biology
There's More to Neutrophil Function Than We Knew
NOV 01, 2020
There's More to Neutrophil Function Than We Knew
Neutrophils are an abundant type of white blood cell that circulate in the blood that can provide a general defense aga ...
NOV 09, 2020
Drug Discovery & Development
COVID-19 Vaccine by Pfizer More than 90% Effective
NOV 09, 2020
COVID-19 Vaccine by Pfizer More than 90% Effective
A preliminary analysis of Pfizer and BioNTech's COVID-19 vaccine shows that it can prevent over 90% of people from c ...
NOV 24, 2020
Immunology
Dirty Sheets Make Babies Healthier
NOV 24, 2020
Dirty Sheets Make Babies Healthier
Microbiologists have established that the development of infants’ immune systems is intricately linked to the dive ...
NOV 10, 2020
Neuroscience
Nanoparticles Pass the Blood-Brain Barrier in Zebrafish
NOV 10, 2020
Nanoparticles Pass the Blood-Brain Barrier in Zebrafish
Video:  Explains the challenges of delivering medicine to the brain, and possibly tools to pass the blood-brain bar ...
DEC 09, 2020
Immunology
Antibodies as Warning Signs of a Silent Cardiovascular Killer
DEC 09, 2020
Antibodies as Warning Signs of a Silent Cardiovascular Killer
In atherosclerosis, cholesterol and other fatty deposits build up around the inner walls of an artery, creating a plaque ...
JAN 13, 2021
Immunology
Antibodies Gain the Upper Hand Against Sly Tumors
JAN 13, 2021
Antibodies Gain the Upper Hand Against Sly Tumors
Tumors use ingenious approaches to stay just out of reach of immune cells on patrol and avoid detection. Indeed, cancer ...
Loading Comments...