MAY 11, 2016 7:00 AM PDT

Could the brain's immune system fight Alzheimer's?

The brain’s immune system potentially could be harnessed to help clear amyloid plaques, which are a hallmark of Alzheimer’s disease.
 
"While we still need to fully understand the complexity and potential unintended consequences of this approach, it is clear that microglia play an important role in the removal of amyloid beta from the brain and may represent a novel approach to treating this disease," says M. Kerry O'Banion.

“This research confirms earlier observations that, when activated to fight inflammation, the brain’s immune system plays a role in the removal of amyloid beta,” says M. Kerry O’Banion, professor in the neurobiology and anatomy department at the University of Rochester.

“We have also demonstrated that the immune system can be manipulated in a manner that accelerates this process, potentially pointing to a new therapeutic approach to Alzheimer’s disease.”

Published in the Journal of Neuroinflammation, the findings are the culmination of years of investigation triggered when researchers made a surprising discovery while studying mouse models of Alzheimer’s disease.  They observed that amyloid beta plaques were being cleared in animals with chronic brain inflammation.

At the time, the mechanism by which the plaques were being removed was not clear.

Researchers eventually set their sights on microglia, native cells that serve as one of the central nervous system’s first lines of defense against infection and injury. Microglia are present throughout the brain and spinal cord, are constantly monitoring their environment, and can be switched on or activated to perform different functions including control inflammation, destroy pathogens, clean up the debris from dead or damaged cells, and seal off the site of an injury.

The researchers conducted a series of experiments to see if they could replicate the phenomenon of amyloid beta clearance absent brain inflammation. To do so, they had to “trick” the microglia into action by injecting a specific protein molecule, a cytokine, into the brain. Cytokines play important roles in cell signaling and the researchers were able to replicate the mechanisms that instruct the microglia to activate an anti-inflammatory response.

Once the microglia were mobilized in mouse models of Alzheimer’s disease, the researchers observed a more than 60 percent reduction in amyloid beta in the brain.

“While we still need to fully understand the complexity and potential unintended consequences of this approach, it is clear that microglia play an important role in the removal of amyloid beta from the brain and may represent a novel approach to treating this disease,” O’Banion says.

Other researches from the University of Rochester and from Boston University are coauthors of the study. The National Institute of Aging supported the work.

Source: University of Rochester

This article was originally posted on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
APR 10, 2020
Drug Discovery & Development
Cancer Therapy Drug Reverses Kidney Damage
APR 10, 2020
Cancer Therapy Drug Reverses Kidney Damage
According to a study published in the journal Science Translational Medicine, a therapeutic previously used for cancer t ...
MAY 05, 2020
Immunology
Winter the Llama: An Unlikely Hero in the Fight Against COVID-19
MAY 05, 2020
Winter the Llama: An Unlikely Hero in the Fight Against COVID-19
A new hero in the fight against COVID-19 has emerged: 4-year-old Winter, a llama that currently resides in the Belgian c ...
JUN 10, 2020
Drug Discovery & Development
FDA Approves New Antibiotic for Hospital-Acquired Pneumonia
JUN 10, 2020
FDA Approves New Antibiotic for Hospital-Acquired Pneumonia
The US Food and Drug Administration (FDA) has approved Recarbrio, an antibiotic drug created by pharmaceutical company M ...
JUN 19, 2020
Cell & Molecular Biology
Learning More About How Cells Control a Death Pathway
JUN 19, 2020
Learning More About How Cells Control a Death Pathway
Scientists have published complementary studies in Nature Communications that have greatly advanced our understanding of ...
JUL 23, 2020
Immunology
Cancer Therapy Reduces Lung Scarring
JUL 23, 2020
Cancer Therapy Reduces Lung Scarring
Scientists at the Stanford Institute for Stem Cell Biology and Regenerative Medicine have discovered a striking parallel ...
JUL 27, 2020
Cell & Molecular Biology
White Blood Cells Are Essential to the Developing Brain
JUL 27, 2020
White Blood Cells Are Essential to the Developing Brain
The brain is protected by a protective shield called the blood-brain barrier, which only allows certain things to pass t ...
Loading Comments...