MAY 11, 2016 6:51 AM PDT

The Role of Insufficient SHANK3 in Autism

WRITTEN BY: Cassidy Reich
Autism is a mystery because it has been very difficult to narrow down what causes this complex and varied pathology. Mutations in various genes have been implicated as risk factors and one such gene is Shank3. The SHANK3 protein is a scaffold protein that is expressed ubiquitously, but is heavily enriched in the postsynaptic densities of excitatory synapses. Deletion of Shank3 is thought to be one of the principal causes of Phelan-McDermid syndrome. Phelan-McDermid syndrome (PMS) is a genetic disorder caused by the deletion of a portion of chromosome 22, where the Shank3 locus is. The main symptoms of PMS are thought to be a result of Shank3 deletion and include developmental delay, intellectual disability, and absent or delayed speech. PMS patients can also exhibit autistic-like behavior such as limited eye contact, adding to the support for SHANK3’s involvement in autism spectrum disorders (ASD).

It is possible that loss of SHANK3 function causes these impairments simply through impaired synaptic function, but some of the cellular changes in Shank3-mutant neurons challenge this explanation. A recent paper by first authors Fei Yi and Tamas Danko from Stanford published in Science details the cellular mechanism behind the mutant Shank3 phenotype. Using neurons derived from human embryonic stem cells with a Shank3 conditional knockout, the researchers saw that insufficient SHANK3 led to a wide variety of cellular changes, including synaptic deficits and altered electrical properties. The question then becomes how does loss of a postsynaptic scaffolding protein lead to changes in the intrinsic electrical properties of the neuron?

The main electrical property change that they saw was a huge increase in input resistance. In this context, the increased input resistance makes the neurons more excitable in response to the same amount of current. From this observation, they hypothesized that altered channel conductance is the primary impairment caused by insufficient SHANK3. What they found is that insufficient SHANK3 protein causes a huge impairment in a particular cation current called IH. The IH current goes through particular channels called HCN channels and it is a particularly interesting current because it is activated by hyperpolarization. The resting potential of a neuronal membrane is ~ -70mV and the neuron fires when the membrane is depolarized to ~ 35mV. Hyperpolarization is when the membrane potential is even more negative. At this potential, the IH current lets cations (positively charged ions) into the neuron to depolarize the membrane back to its resting potential. Because of this functionality, HCN channels and IH currents are known as “pacemakers”; they help to establish rhythmic or oscillatory firing in neurons. HCN channels may also play a role in synaptic plasticity. Pharmacological blockade of IH currents mimics the cellular phenotype of insufficient SHANK3, confirming that the changes in neuronal electrical properties is the primary cellular phenotype caused by SHANK3 insufficiency. The other cellular changes (impaired synaptic transmission, deficits in dendritic branching, and increased excitability) are caused by the impaired IH current. These changes were rescued by re-expression of functional SHANK3.
 

It is important to figure out the cellular changes caused by SHANK3 insufficiency because it is a gene that has been heavily linked to autism. The research presented in this Science paper, apart from being super interesting, could eventually lead to a pharmacological target to relieve some of the symptoms of PMS and ASD.     

Sources: Science, PMS, and HCN review
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
JUL 05, 2021
Neuroscience
Immature Astrocytes Promote High Levels of Neuroplasticity
JUL 05, 2021
Immature Astrocytes Promote High Levels of Neuroplasticity
Researchers from France have found that astrocytes do more than support neurons in the central nervous system. They foun ...
JUL 24, 2021
Cannabis Sciences
How Does Cannabis Affect Young People with ADHD?
JUL 24, 2021
How Does Cannabis Affect Young People with ADHD?
Researchers from Stanford University have conducted a review on current research investigating adverse effects on brain ...
AUG 01, 2021
Technology
Actually, You DO Know You Are a Brain in a Vat: Exoskeleton Pros and Cons
AUG 01, 2021
Actually, You DO Know You Are a Brain in a Vat: Exoskeleton Pros and Cons
Exoskeletons promise mobility and enhance strength, but a new study shows they can be debilitating for the brain
AUG 01, 2021
Drug Discovery & Development
New Compound Halts Neurodegeneration in Alzheimer's
AUG 01, 2021
New Compound Halts Neurodegeneration in Alzheimer's
Chemists have synthesized new compounds that can halt neurodegeneration linked to Alzheimer’s and other neurologic ...
AUG 21, 2021
Genetics & Genomics
Like Some People, Isolated Flies Will Eat More and Sleep Less
AUG 21, 2021
Like Some People, Isolated Flies Will Eat More and Sleep Less
Over the past year and a half, may people have been isolated and have spent far more time alone than usual. For some, th ...
AUG 29, 2021
Cancer
Researchers Bioprint Deadly Brain Tumor with 3D Printer
AUG 29, 2021
Researchers Bioprint Deadly Brain Tumor with 3D Printer
Researchers have managed to print an entire active and viable glioblastoma tumor- the deadliest form of brain cancer- us ...
Loading Comments...