AUG 02, 2016 07:00 AM PDT

TSRI Researchers Find ‘Lead Actors' in Immune Cell Development

LA JOLLA, CA – August 2, 2016 – A new study, led by scientists at The Scripps Research Institute (TSRI), reveals a surprising twist in immune biology.

The research in animal models suggests that members of a cluster of microRNAs (miRNAs)—small non-coding RNA molecules that play a role in regulating gene expression—work together throughout the different stages of immune cell generation.

Interestingly, the researchers discovered that different members of the cluster dominate different stages as disease-targeting immune cells, called B cells, develop—a finding that could guide the development of therapies against autoimmune diseases.

“Although the miRNAs in the cluster are all expressed, it’s not like they’re playing the same role—different individual miRNAs within the cluster are more important than others in controlling different stages of B cell development,” said TSRI Research Associate Alicia Gonzalez Martin, who served as co-first author of the study with TSRI Professional Scientific Collaborator Maoyi Lai and Anthony B. Cooper, a TSRI researcher now at Adimab.
Authors of the new paper include (left to right) Changchun Xiao, David Nemazee, Alicia Gonzalez Martin and Maoyi Lai of The Scripps Research Institute.

“At different stages, one miRNA is like the lead actor and another is like a supporting actor,” added Lai.

The study, published August 2, 2016, in the journal Nature Communications, was co-led by TSRI Associate Professor Changchun Xiao and TSRI Professor David Nemazee.

A Key Question in Drug Development

As they develop, the immune system’s B cells acquire specific receptors to allow them to recognize and attack harmful pathogens. The receptor assembly process is random, and sometimes this roll of the dice leads to potentially harmful cells—such as B cells that produce antibodies against the body’s own tissues, causing autoimmune diseases like lupus.

miRNAs appear to be crucial for healthy B cell development. Previous TSRI studies from the Xiao lab have shown that six miRNAs form a cluster called miR-17~92, whose expression has to stay at just the right level to stop cells from triggering cancers or autoimmune diseases.

In the new study, the researchers investigated the roles of the six miRNAs in this cluster to see if any might be good targets for future therapeutics.

“miRNA-based therapies are usually designed for certain miRNAs, not a whole cluster,” Lai explained. “If you can narrow it down to one or two important miRNAs, you can design miRNA mimics or anti-miRNAs to try to restore the normal expression level.”

A Shift in Power

The new study suggests that the expression of two miRNAs in this cluster, called miR-17 and miR-19, are key to healthy B cell development.

By “knocking out” (disabling) expression of these select miRNAs in mouse models, the researchers found that miR-17 steps in early in B cell development, making it possible for B cells to progress through this stage and produce the receptors they need to fight infections later on. Although the pathway for this action is not yet known, the researchers found that B cells without miR-17 cannot develop effectively—thus weakening the immune system.

miR-19 expression is important later on in B cell development, helping to regulate the quality control “checkpoint” system that stops harmful B cells from escaping the bone marrow and causing disease.

The researchers found that overexpression of miR-19 led to a reduced expression of a gene called Pten, allowing potentially autoimmune disease-causing cells to survive longer and get past the checkpoint.

“Pten has been the focus of oncology studies, so it’s interesting to see that this gene is also involved in tolerance checkpoints,” said Lai.

Other miRNAs from the cluster are involved during both of these processes, but they appear to have minor roles.

The researchers plan to continue their investigation into the roles of different miRNAs at the tolerance checkpoint stage and their roles in autoimmunity, with the goal of figuring out which might be the best to target with future therapeutics.

In addition to Gonzalez Martin, Lai, Cooper, Xiao and Nemazee, authors of the study, “Regulation of B Cell Development and Tolerance by Different Members of the miR-17~92 Family MicroRNAs,” were Hiroyo Oda of National Center for Global Health and Medicine (Japan), previously at TSRI; and Hyun Yong Jin, Jovan Shepherd, Linling He and Jiang Zhu of TSRI.

This study was supported by The Pew Charitable Trusts, Cancer Research Institute, Lupus Research Institute and National Institutes of Health (grants R01AI087634, R01AI089854, R56AI110403 and R56AI121155).

This article was originally published on
About the Author
  • The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists-including two Nobel laureates-work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see
You May Also Like
OCT 03, 2018
OCT 03, 2018
Natural Killers for HIV Vaccine
A team of researchers from Duke Human Vaccine Institute has recently published their work regarding the interplay of natural killer cells (NK cells) and broadly neutralizing antibodies (bnAbs...
OCT 22, 2018
OCT 22, 2018
Barcoding for Cancer Immunity Genes
Scientists develop a novel technology that allows for protein barcoding to reveal gene function...
NOV 20, 2018
NOV 20, 2018
Mutations Mutations Which Ones Do We Want?
A team at UCSF makes use of new SLICE tool to generate mutations that reveal specific genetic functions....
NOV 20, 2018
NOV 20, 2018
Survival of the SCID Patient
A team of scientists reviewed over 600 SCID patients medical records to establish the relationship between genetics and survival rates....
NOV 30, 2018
NOV 30, 2018
Aspirin May Impove MS Symptoms
The medical benefits of aspirin have been known since ancient times. Hippocrates, c. 400 BC, prescribed the salicylate-rich bark and leaves of the willow t...
DEC 18, 2018
Health & Medicine
DEC 18, 2018
Mapping the Human Proteome
Advancing our understanding of human disease often requires a sound understanding of normal human physiology. A critical tool to provide guidance on human...
Loading Comments...