OCT 10, 2016 6:39 AM PDT

Protecting B Cell Chromosomes to Treat Non-Hodgkin's Lymphoma

WRITTEN BY: Kara Marker
One small change in the chromosomes of B lymphocytes, and the immune cells cannot proliferate and create antibodies to fight infection and cancer. A recent study shows that the protective abilities of a particular enzyme might be the key to a powerful population of protective B lymphocytes.
An enzyme called uracil-DNA glycosylase (UNG) protects the ends of B cell chromosomes so that the cells can continue to divide and give rise to antibodies to target foreign antigens. Researchers from Rockefeller University believe that promoting this protective mechanism could help treat certain types of non-Hodgkin’s lymphoma in addition to other infections. 

Another enzyme enters the picture once B cells begin proliferating due to a foreign antigen identified in the blood stream. Activation-induced deaminase, or AID, is a DNA-modifying enzyme that triggers mutations in the immunoglobulin genes of B cells that are responsible for the development of an increasingly diverse population of infection-fighting antibodies. This diverse population is particularly capable of strong binding of foreign antigens and the stimulation of various immune responses.

Unfortunately, the AID enzyme also has a “dark side;” the same mutations in makes in the B cell immunoglobulin genes can also lead to tumor growth in cancers like non-Hodgkin’s lymphoma. Even more, non-Hodgkin’s lymphoma tumor cells often overexpress AID on their own, exacerbating the growth of tumor cells.

The study from Rockefeller University investigated the potential of UNG to repair the mutations made in the B cell genome by AID enzymes to prevent the growth of non-Hodgkin’s lymphoma tumors: were AID enzymes targeting the telomeres of B cells? Using mouse models, scientists saw that without UNG, B cell telomere mutations from AID caused the ends of B cell chromosomes to rapidly shorten, drastically reducing the antibody-producing cells’ ability to proliferate.

"UNG can contribute to lymphomagenesis by protecting telomeres from AID-induced damage," said study leader Ramiro Verdun. "We show that cancerous human B cells expressing AID require UNG for proliferation, suggesting that targeting UNG may be a means to delay the growth of AID-positive cancers."

Verdun’s study was recently published in The Journal of Experimental Medicine.
 


Source: The Rockefeller University Press
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 18, 2020
Immunology
How Dolphins Could Help Us Live Longer
AUG 18, 2020
How Dolphins Could Help Us Live Longer
Dolphins are helping scientists answer the age-old question: can we stop the clock when it comes to aging? A recent stud ...
AUG 19, 2020
Cell & Molecular Biology
Mild COVID-19 Cases Induce an Immune Cell Response
AUG 19, 2020
Mild COVID-19 Cases Induce an Immune Cell Response
As the pandemic virus, SARS-CoV-2 continues to cause tens of thousands of new cases of COVID-19 every day in the United ...
SEP 11, 2020
Immunology
Study Reveals Tumor Defense Mechanism... And How to Beat It
SEP 11, 2020
Study Reveals Tumor Defense Mechanism... And How to Beat It
  P53 is an infamous process gene at the core of the development of tumors.  When P53  functional, it pau ...
OCT 05, 2020
Immunology
Can't Shed Those Extra Pounds? An Inflammatory Gene Could Be to Blame.
OCT 05, 2020
Can't Shed Those Extra Pounds? An Inflammatory Gene Could Be to Blame.
  Australian scientists have zeroed in on a gene linked to an increased obesity risk: a regulator of inflammation c ...
NOV 09, 2020
Microbiology
Fighting COVID-19 with Help From Llamas
NOV 09, 2020
Fighting COVID-19 with Help From Llamas
Camelids, which include llamas, alpacas and camels have immune systems that generate two kinds of antibodies when confro ...
NOV 20, 2020
Drug Discovery & Development
Cat Parasite Gives Clues on New Drug Targets for Schizophrenia
NOV 20, 2020
Cat Parasite Gives Clues on New Drug Targets for Schizophrenia
Researchers from the UK and France have discussed a mechanism of action behind the infamous Toxoplasma gondii  ...
Loading Comments...