OCT 10, 2016 6:39 AM PDT

Protecting B Cell Chromosomes to Treat Non-Hodgkin's Lymphoma

WRITTEN BY: Kara Marker
One small change in the chromosomes of B lymphocytes, and the immune cells cannot proliferate and create antibodies to fight infection and cancer. A recent study shows that the protective abilities of a particular enzyme might be the key to a powerful population of protective B lymphocytes.
An enzyme called uracil-DNA glycosylase (UNG) protects the ends of B cell chromosomes so that the cells can continue to divide and give rise to antibodies to target foreign antigens. Researchers from Rockefeller University believe that promoting this protective mechanism could help treat certain types of non-Hodgkin’s lymphoma in addition to other infections. 

Another enzyme enters the picture once B cells begin proliferating due to a foreign antigen identified in the blood stream. Activation-induced deaminase, or AID, is a DNA-modifying enzyme that triggers mutations in the immunoglobulin genes of B cells that are responsible for the development of an increasingly diverse population of infection-fighting antibodies. This diverse population is particularly capable of strong binding of foreign antigens and the stimulation of various immune responses.

Unfortunately, the AID enzyme also has a “dark side;” the same mutations in makes in the B cell immunoglobulin genes can also lead to tumor growth in cancers like non-Hodgkin’s lymphoma. Even more, non-Hodgkin’s lymphoma tumor cells often overexpress AID on their own, exacerbating the growth of tumor cells.

The study from Rockefeller University investigated the potential of UNG to repair the mutations made in the B cell genome by AID enzymes to prevent the growth of non-Hodgkin’s lymphoma tumors: were AID enzymes targeting the telomeres of B cells? Using mouse models, scientists saw that without UNG, B cell telomere mutations from AID caused the ends of B cell chromosomes to rapidly shorten, drastically reducing the antibody-producing cells’ ability to proliferate.

"UNG can contribute to lymphomagenesis by protecting telomeres from AID-induced damage," said study leader Ramiro Verdun. "We show that cancerous human B cells expressing AID require UNG for proliferation, suggesting that targeting UNG may be a means to delay the growth of AID-positive cancers."

Verdun’s study was recently published in The Journal of Experimental Medicine.
 


Source: The Rockefeller University Press
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 13, 2020
Immunology
FEB 13, 2020
Protein that suppresses immune system linked to lupus
  A study published in Human Immunology has described, for the first time, a link between an immunosuppressive prot ...
MAR 20, 2020
Health & Medicine
MAR 20, 2020
Why Does COVID-19 Kill So Many Older People?
Since early statistics began to emerge from China, it seemed that COVID-19 tended to affect older people more than young ...
MAR 28, 2020
Drug Discovery & Development
MAR 28, 2020
Could the Blood of Coronavirus Survivors Save Lives?
As the search for a treatment for coronavirus continues, a perhaps obscure-sounding candidate has begun to make headline ...
APR 13, 2020
Cannabis Sciences
APR 13, 2020
Smoking Cannabis Increases COVID-19 Risk
Health experts from the National Institute on Drug Abuse and the American Lung Association have said that smoking cannab ...
APR 15, 2020
Immunology
APR 15, 2020
How Malaria Protects Itself from the Immune System
A specific parasitic species causes the most deaths from malaria: Plasmodium falciparum. This parasite does so by avoidi ...
APR 21, 2020
Cancer
APR 21, 2020
Scientists develop tumor immunity map
A new study published in eLife describes the findings from a study that has successfully mapped tumor cell molecule ...
Loading Comments...