JAN 18, 2017 06:01 PM PST

A Cup of Coffee Could Help Chronic Inflammation

Stanford researchers have uncovered an association between the aging process, chronic inflammation that can come with aging, cardiovascular disease risk, and a good old cup of coffee.

The multiyear study, published in Nature Medicine, followed 100 participants through blood samples, surveys, and medical and family history. By in-depth genetic and epidemiological analysis of study data, the group identified several correlating health factors with caffeine as well as a common inflammatory mechanism that was active in a subset of the participants that had low caffeine intake and suppressed in those that regularly drank coffee.

Coffee tends to lessen effects of inflammatory pathways

Chronic inflammation is known to become more prevalent with age. It is also one of the main causes of a host of age-related diseases, such as many cancers, Alzheimer’s disease and other dementias, cardiovascular disease, osteoarthritis and even depression. The fact that the study shows a direct correlation between chronic inflammation pathways and cardiovascular risk further supports previous findings.

“More than 90 percent of all noncommunicable diseases of aging are associated with chronic inflammation,” said the study’s lead author, David Furman, PhD, a consulting associate professor at the Stanford Institute for Immunity, Transplantation and Infection, “It’s also well-known that caffeine intake is associated with longevity. Many studies have shown this association. We’ve found a possible reason for why this may be so.”

Researchers compared blood drawn in older vs younger participants to figure out if there were any immune-related genes that were more active in older people and thus potentially associated with aging. They focused on two gene clusters that are connected to the activity of a specific circulating inflammatory protein called IL-1-beta. The IL-1-beta protein an important mediator of the inflammatory response, and is involved in various cellular activities, including cell proliferation, differentiation, and apoptosis. IL-1-beta is also found to contribute to inflammatory pain hypersensitivity, and its surrounding process is implicated in cardiovascular disease and overall mortality.

IL-1-beta tends to be triggered by metabolites, breakdown products from nucleic acids, circulating in the blood. The findings showed that the effects of these metabolites were countered by caffeine and its metabolites.

Looking further into what associations the gene clusters have within the group of participants, the team found several other unique differences. Within the older group of participants, those that had high activation of one or both gene clusters also had high blood pressure, were less likely to live to 90, had increased activity of free radicals and had elevated levels of both IL-1-beta and circulating metabolites.

In order to confirm these associations, the team incubated immune cells with certain metabolites and tested gene cluster and IL-1-beta activity. As expected, the metabolites caused an increase in activity in one of the gene clusters, resulting in increased IL-1-beta production. The team then injected the metabolites into mice, which caused severe systemic inflammation and increased blood pressure.

Returning to the premise of the involvement of caffeine in the correlations between older participants’ health and gene-cluster activation, the researchers confirmed that blood taken from the healthier group with low cluster activity was enriched for caffeine and its metabolites. Adding caffeine and its breakdown products to immune cells along with the original nucleic acid metabolites prevented the metabolites from causing the same severe inflammatory effect on the cells.

“That something many people drink — and actually like to drink — might have a direct benefit came as a surprise to us,” said Davis. “What we’ve shown is a correlation between caffeine consumption and longevity. And we’ve shown more rigorously, in laboratory tests, a very plausible mechanism for why this might be so.”

Sources: Stanford News, Nature Medicine

About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
NOV 13, 2019
Microbiology
NOV 13, 2019
In Space, Dormant Viruses Can Reactivate
Some astronauts have lived onboard the International Space Station for hundreds of days. Researchers are learning more about the things that can happen in that time....
NOV 13, 2019
Cell & Molecular Biology
NOV 13, 2019
Visualizing the Maturation of T Cells in the Thymus
Scientists have visualized how the body tests out important defensive cells, and have captured the process on video....
NOV 13, 2019
Microbiology
NOV 13, 2019
The Developing Fetus is Exposed to Bacteria in the Womb
Our bodies host many microbes, and scientists have been learning more about the role of this microbiome in our health, and when it is established....
NOV 13, 2019
Cardiology
NOV 13, 2019
Strep Throat Can Lead To Heart Complications
Rheumatic fever (RF) is a complication resulting from untreated strep throat. Caused by group A streptococcal infection, rheumatic fever was once the numbe...
NOV 13, 2019
Cell & Molecular Biology
NOV 13, 2019
Stem Cell Derived Natural Killer T Cells as Novel and Long-term Cancer Treatment
Hematopoietic stem cells are used to create a population of Natural Killer T-cells that could sustain and renew within the immune system, and attack cancer cells....
NOV 13, 2019
Genetics & Genomics
NOV 13, 2019
Can CRISPR Replace Antibiotics?
Antibiotic-resistant infections claim around 700,000 lives per year, with estimates saying that this number could swell to 10 million by 2050 (Jacobs: 2019...
Loading Comments...