MAR 13, 2018 12:43 PM PDT

Enzyme's Structure Linked to Heart Disease, Diabetes, Cancer, Parkinson's

WRITTEN BY: Kara Marker

One enzyme’s structure may hold the key to new treatments for a variety of diseases: diabetes, cancer, neurodegenerative disorders, heart disease. Without knowing its structure, researchers have not been successful in developing inhibitor drugs to address the protein’s connection to various conditions through activating the inflammatory pathway. Now, from St. Louis University, scientists have been able to determine the enzyme’s structure.

Photomicrograph of a region of substantia nigra in a Parkinson's patient showing Lewy bodies and Lewy neurites. Credit: Suraj Rajan

"In the past, people have studied this complex enzyme, like a black box, without knowing what is inside," explained Sergey Korolev, PhD. "Now that we have discovered the structure, we can see every atom. This allows us to visualize what is happening with this protein. It is a completely new level of insight."

The enzyme is calcium-independent phospholipase A2β (iPLA2β), which was first discovered more than 20 years ago for its role in type 1 diabetes, then again ten years ago for its role in neurodegenerative disorders. In addition to “iPLA2β,” the enzyme is also referred to as PARK14 in connection to genetic mutations in patients with Parkinson’s disease.

“For example, inherited mutations in this gene were identified in patients with early onset Parkinson's,” Korolev explained.

Korolev and many other scientists are interested in iPLA2β because of its connection to the inflammatory response, a mechanism known to be at the foundation of multiple diseases. Past studies show that iPLA2β cleaves phospholipids in the cell membrane and responds to injury by triggering the immune response.

But without knowing iPLA2β’s molecular structure, researchers couldn’t answer important questions: How is iPLA2β activated during injury? How does it get shut down (deactivating the inflammatory response)?

Korolev and other scientists from St. Louis University were finally able to determine iPLA2β’s molecular structure via x-ray crystallography. What they found was different than what researchers had anticipated.

"Before we had the structure, people didn't have good tools to study this enzyme," Korolev said. “Now, the 3D structure gives us a clear hypothesis for how it is responsible for action in different cellular compartments and tissues.”

"There is a growing amount of genetic work that links iPLA2β to neurodegenerative disease, and physicians and scientists worldwide are now interested in its function," explained MD/PhD student Konstantin Malley. "We are still a long way from treating patients, but I would like them to know that the structure is a large step between genetics and developing targeted therapies for treatment.”

The present study was published in the journal Nature Communications.

Sources: St. Louis University, Diabetes

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JAN 12, 2021
Immunology
Killer Control: Engineered Stem Cells Dodge Transplant Rejection
JAN 12, 2021
Killer Control: Engineered Stem Cells Dodge Transplant Rejection
The first organ transplant—performed over 60 years ago—was a success because the donor and recipient were id ...
FEB 09, 2021
Immunology
Putting the Kibosh on HIV's Stealth Tactics
FEB 09, 2021
Putting the Kibosh on HIV's Stealth Tactics
The human immunodeficiency virus or HIV is always one step of the immune system, a tactic that makes it impossible to co ...
FEB 10, 2021
Drug Discovery & Development
Black Men Respond Best to Immunotherapy for Prostate Cancer
FEB 10, 2021
Black Men Respond Best to Immunotherapy for Prostate Cancer
Researchers from Northwestern University have found that Black men and men of African ancestry respond better than men f ...
MAR 04, 2021
Infographics
All You Need to Know about COVID-19 Vaccines
MAR 04, 2021
All You Need to Know about COVID-19 Vaccines
After over a year lockdowns brought on by the pandemic, hopes for returning to something even similar to ' ...
MAR 25, 2021
Immunology
The Immune System Impairs Antibiotic Effectiveness
MAR 25, 2021
The Immune System Impairs Antibiotic Effectiveness
Nitric oxide, a molecule produced by the immune system, can negatively impact antibiotics’ effectiveness, says a s ...
APR 03, 2021
Cancer
New factor plays a key role in immune response
APR 03, 2021
New factor plays a key role in immune response
In a study published recently in Science Immunology, WEHI’s Professor Stephen Nutt, Dr. Michael Chopin, and Mr. Sh ...
Loading Comments...