MAY 24, 2018 1:26 AM PDT

Isolating a Neurological Protein May Protect Against Inflammatory Disorders

WRITTEN BY: Nouran Amin

Investigators from Osaka University have isolated a neurological protein involved in the activation of immune cells that typically protect against inflammatory disorders. This discovery is crucial because it can lead to the development of new treatments for inflammatory diseases.

The immune cells known as macrophages are categorized as M1 or M2 inflammatory macrophages. The M1 cells participate in the inflammatory response that destroys invading organisms, while M2 cells hold anti-inflammatory properties that are believed to protect against inflammatory diseases.

The investigators were aware that before these macrophages carried out their intended roles, they must first be activated and transformed into either the M1 or the M2 subtype. However, the mechanisms behind macrophage subtype commitment are not fully understood.

The current study, as reported in Nature Immunology, has isolated a protein that drives macrophages to differentiate into the M2 type, which protects against inflammatory conditions. The M1 and M2 macrophage populations hold differing energy needs, so the macrophages must be able to sense and respond to nutrients in their surroundings as part of the activation process. The research team investigated a cell signaling pathway that forces macrophages to form the M2 subtype, this signaling pathway is known as mTOR.

Investigators utilized used a chemical inhibitor that stops the activity of the mTOR protein using and enables them to observe how other proteins in the pathway were affected.

Surprisingly, the study led to the identification of a protein by the name of Sema6D, known for its role in neuronal guidance during nervous system development. So, when M2 macrophages were genetically engineered, they did not contain Sema6D.

Without Sema6D protein, the macrophages are unable to undergo transformation into the M2 cell population. Once M2 differentiation can be inhibited, investigators realized how this might affect the protective role of these cells in inflammatory conditions.

Lead researcher Atsushi Kumanogoh believes the research findings conclude that Sema6D inactivation prevents M2 differentiation, which causes the body to be more susceptible to inflammatory conditions.

"We’re hopeful that this discovery offers new leads in the drug discovery process for these diseases,” notes Kumanogoh.

Source: Alpha Galileo

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
SEP 24, 2020
Immunology
Remember That Coronavirus You Once Met? Your T Cells Do.
SEP 24, 2020
Remember That Coronavirus You Once Met? Your T Cells Do.
The SARS-CoV-2 virus was first identified in December 2019 in Wuhan, Hubei, China and quickly escalated to a pandemic st ...
SEP 21, 2020
Cell & Molecular Biology
The Hormones We Have at Birth Are Linked to Disease Throughout Life
SEP 21, 2020
The Hormones We Have at Birth Are Linked to Disease Throughout Life
New work may help explain why some autoimmune or immune-related diseases are more common in women, who are more likely t ...
SEP 11, 2020
Immunology
Study Reveals Tumor Defense Mechanism... And How to Beat It
SEP 11, 2020
Study Reveals Tumor Defense Mechanism... And How to Beat It
  P53 is an infamous process gene at the core of the development of tumors.  When P53  functional, it pau ...
NOV 04, 2020
Coronavirus
Damaging Antibodies Can Lead to Blood Clots in COVID-19 Patients
NOV 04, 2020
Damaging Antibodies Can Lead to Blood Clots in COVID-19 Patients
COVID-19, the illness caused by the pandemic virus SARS-CoV-2, is known to cause blood clots all over the body in some p ...
NOV 16, 2020
Immunology
Australian COVID-19 vaccine is promising and could be released next year
NOV 16, 2020
Australian COVID-19 vaccine is promising and could be released next year
Pharmaceutical companies worldwide are racing to develop a COVID-19 vaccine that will hopefully end this pandemic and he ...
NOV 24, 2020
Immunology
Dirty Sheets Make Babies Healthier
NOV 24, 2020
Dirty Sheets Make Babies Healthier
Microbiologists have established that the development of infants’ immune systems is intricately linked to the dive ...
Loading Comments...