MAY 24, 2018 01:26 AM PDT

Isolating a Neurological Protein May Protect Against Inflammatory Disorders

WRITTEN BY: Nouran Amin

Investigators from Osaka University have isolated a neurological protein involved in the activation of immune cells that typically protect against inflammatory disorders. This discovery is crucial because it can lead to the development of new treatments for inflammatory diseases.

The immune cells known as macrophages are categorized as M1 or M2 inflammatory macrophages. The M1 cells participate in the inflammatory response that destroys invading organisms, while M2 cells hold anti-inflammatory properties that are believed to protect against inflammatory diseases.

The investigators were aware that before these macrophages carried out their intended roles, they must first be activated and transformed into either the M1 or the M2 subtype. However, the mechanisms behind macrophage subtype commitment are not fully understood.

The current study, as reported in Nature Immunology, has isolated a protein that drives macrophages to differentiate into the M2 type, which protects against inflammatory conditions. The M1 and M2 macrophage populations hold differing energy needs, so the macrophages must be able to sense and respond to nutrients in their surroundings as part of the activation process. The research team investigated a cell signaling pathway that forces macrophages to form the M2 subtype, this signaling pathway is known as mTOR.

Investigators utilized used a chemical inhibitor that stops the activity of the mTOR protein using and enables them to observe how other proteins in the pathway were affected.

Surprisingly, the study led to the identification of a protein by the name of Sema6D, known for its role in neuronal guidance during nervous system development. So, when M2 macrophages were genetically engineered, they did not contain Sema6D.

Without Sema6D protein, the macrophages are unable to undergo transformation into the M2 cell population. Once M2 differentiation can be inhibited, investigators realized how this might affect the protective role of these cells in inflammatory conditions.

Lead researcher Atsushi Kumanogoh believes the research findings conclude that Sema6D inactivation prevents M2 differentiation, which causes the body to be more susceptible to inflammatory conditions.

"We’re hopeful that this discovery offers new leads in the drug discovery process for these diseases,” notes Kumanogoh.

Source: Alpha Galileo

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
JUL 11, 2018
Immunology
JUL 11, 2018
The Power of Seal Serum
Unlike humans, seals remain uninjured despite repeated deep dives to hunt. Scientists have shown that serum from seals blood provides anti-inflammatory properties that lower immune response....
JUL 28, 2018
Immunology
JUL 28, 2018
IgM Antibody Protects against HIV-1 Infection
The antibody IgM is shown to be provide protection against HIV infection in rhesus monkeys up to 82 days past exposure to HIV....
AUG 24, 2018
Cell & Molecular Biology
AUG 24, 2018
Chronic Allergies can Change Cells
Chronic rhinosinusitis is different from allergies; it leads to serious inflammation and swelling in the sinuses that can last for years....
AUG 28, 2018
Cell & Molecular Biology
AUG 28, 2018
Finding the Source of a Common Immune Cell
Neutrophils are a highly abundant type of immune cell, outnumbering every other kind that runs through the bloodstream....
SEP 26, 2018
Neuroscience
SEP 26, 2018
Therapeutic antibodies for Alzheimer's disease: challenges and hopes
Solanezumab: this simple name evokes at the same time one of the greatest hopes and the worst disillusions for Alzheimer’s Disease (AD) patients. Two...
OCT 04, 2018
Videos
OCT 04, 2018
Why Do We Have Nightmares With a Fever?
Fever is the body’s response to a threat. When some viruses or bacteria try to enter the body, an immune response begins that can include a sharp ris...
Loading Comments...