AUG 14, 2018 6:12 AM PDT

How Ebola Gets Into Cells

WRITTEN BY: Carmen Leitch

Ebola is a deadly infectious disease that seems to pop back up just often enough to remind us that it’s still lurking out there, waiting to wreak havoc. New research by scientists at the Texas Biomedical Research Institute has identified specific proteins used by the pathogen to get into cells, where it begins to produce more viral particles that can go on to infect more cells and spread the virus. The data has been reported in The Journal of Infectious Diseases.

One of the most recent Ebola outbreaks has killed thirty people in the east of the Democratic Republic of Congo. Research on this deadly germ has to be performed in a biosafety lab, usually far off-site, that can contain pathogens that don’t have cures or vaccine to fight them.

The scientists found that the virus takes advantage of a cellular pathway called autophagy, in which cells can degrade parts of themselves as a survival or defensive strategy; it can eliminate invaders or recycle essential cellular parts. It usually occurs within the cell, but Texas Biomed staff scientist Olena Shtanko, Ph.D. revealed that it can also take place near the cell surface. That is where Ebola uses it to facilitate the uptake of viral particles, called virions. 

By using a poorly understood process called macropinocytosis, the Ebola virus can create extensions that curl around virions, taking them into the cell interior.

“We were stunned to find that Ebola virus is using autophagy regulators right at the surface of the cell,” Shtanko noted. “Knowing that these mechanisms work together, we can start finding ways to regulate them.”

An understanding of the interaction between these cellular processes may help scientists learn more about other physiological functions and diseases. 

Scanning electron micrograph of Ebola virus budding from the surface of a Vero cell (African green monkey kidney epithelial cell line). Credit: NIAID

The interplay between these two cellular processes may also have implications for the treatment of health conditions other than viruses. Shtanko suggested that if a protein involved in autophagy could be regulated with a drug, it may help treat combat complex diseases in which macropinocytosis has been implicated. That includes some cancer and neurodegenerative disorders, such as Alzheimer’s disease.

“The work is a great example of serendipity,” commented study co-author scientist Rob Davey, “Few would have thought that working on Ebola virus would reveal something truly new about how the cell works.”


Sources: Texas Biomed, The Journal of Infectious Diseases

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 27, 2019
Genetics & Genomics
NOV 27, 2019
Humans Are Continuing to Evolve, Along With Immune-Related Diseases
Humans have evolved in some ways to be less susceptible to pathogens, but those benefits can also carry risks of other diseases....
DEC 06, 2019
Neuroscience
DEC 06, 2019
Gut Bacteria Influences Response to Fear
The last decade has seen an increasing amount of interest on how our gut bacteria, or microbiome, influences our health. Now, from a new study looking at m...
DEC 22, 2019
Microbiology
DEC 22, 2019
Viruses Can Escape the Effects of CRISPR by Shielding Their Genomes
Our world is filled with microbes, and in every kind of environment, they compete for supremacy, a competition that dates back to the origins of life....
JAN 27, 2020
Microbiology
JAN 27, 2020
Microbes in Household Dust May Be Spreading Antibiotic Resistance
Bacteria live in household dust, and sometimes a few of those microbes are pathogenic or carry genes that confer resistance to antibiotics....
FEB 14, 2020
Microbiology
FEB 14, 2020
Beneath the Surface, We All Carry the Same Microbes in Our Skin
Our skin is a critical barrier, and it is made up of three layers. It also carries a community of microbes - a skin microbiome....
FEB 17, 2020
Genetics & Genomics
FEB 17, 2020
Engineering a Genome
Scientists are learning more about how to use the genetic code to make a synthetic genome with specific biological functions....
Loading Comments...