AUG 14, 2018 06:12 AM PDT

How Ebola Gets Into Cells

WRITTEN BY: Carmen Leitch

Ebola is a deadly infectious disease that seems to pop back up just often enough to remind us that it’s still lurking out there, waiting to wreak havoc. New research by scientists at the Texas Biomedical Research Institute has identified specific proteins used by the pathogen to get into cells, where it begins to produce more viral particles that can go on to infect more cells and spread the virus. The data has been reported in The Journal of Infectious Diseases.

One of the most recent Ebola outbreaks has killed thirty people in the east of the Democratic Republic of Congo. Research on this deadly germ has to be performed in a biosafety lab, usually far off-site, that can contain pathogens that don’t have cures or vaccine to fight them.

The scientists found that the virus takes advantage of a cellular pathway called autophagy, in which cells can degrade parts of themselves as a survival or defensive strategy; it can eliminate invaders or recycle essential cellular parts. It usually occurs within the cell, but Texas Biomed staff scientist Olena Shtanko, Ph.D. revealed that it can also take place near the cell surface. That is where Ebola uses it to facilitate the uptake of viral particles, called virions. 

By using a poorly understood process called macropinocytosis, the Ebola virus can create extensions that curl around virions, taking them into the cell interior.

“We were stunned to find that Ebola virus is using autophagy regulators right at the surface of the cell,” Shtanko noted. “Knowing that these mechanisms work together, we can start finding ways to regulate them.”

An understanding of the interaction between these cellular processes may help scientists learn more about other physiological functions and diseases. 

Scanning electron micrograph of Ebola virus budding from the surface of a Vero cell (African green monkey kidney epithelial cell line). Credit: NIAID

The interplay between these two cellular processes may also have implications for the treatment of health conditions other than viruses. Shtanko suggested that if a protein involved in autophagy could be regulated with a drug, it may help treat combat complex diseases in which macropinocytosis has been implicated. That includes some cancer and neurodegenerative disorders, such as Alzheimer’s disease.

“The work is a great example of serendipity,” commented study co-author scientist Rob Davey, “Few would have thought that working on Ebola virus would reveal something truly new about how the cell works.”


Sources: Texas Biomed, The Journal of Infectious Diseases

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 03, 2018
Immunology
JUL 03, 2018
Here's a Virus that Boosts the Immune System
There’s a new therapeutic approach to boosting the weakened immune system that develops naturally with age, but it’s anything but conventional....
JUL 11, 2018
Microbiology
JUL 11, 2018
New Insight Into Bacterial Pathogenicity
Scientists have learned how some pathogenic bacteria stick to cells in the intestine, which gets their infection started....
AUG 13, 2018
Microbiology
AUG 13, 2018
Insight Into the Origins of Junk DNA - From Koalas
The human genome isn't only genes. There's also long, repetitive sequences with an unknown function and origin....
SEP 09, 2018
Videos
SEP 09, 2018
Black Hairy Tongue - A Shocking Antibiotic Side Effect
A 55-year-old woman experienced a rare side effect of antibiotics while being treated for an infection....
SEP 25, 2018
Videos
SEP 25, 2018
Post-Hurricane Bacterial Threats
Natural disasters like hurricanes are dangerous when they occur, and their aftermath poses another set of problems....
SEP 26, 2018
Microbiology
SEP 26, 2018
Improving Gut Health - with Viruses
Viruses don't only infect animals. Some, called bacteriophages, can infect bacteria....
Loading Comments...