JAN 19, 2019 11:10 AM PST

Gut Bacteria Influence the Efficacy of a Parkinson's Drug

WRITTEN BY: Carmen Leitch

We all host a vast community of microbes in our gut, a part of the body that’s been called a second brain because of its close connections with our central nervous system. The bacteria in our digestive tract helps us metabolize food, and it can also impact oral therapeutics. New research by scientists at the University of Groningen has shown that gut microbes are interfering with levodopa, a treatment for Parkinson’s disease. Levodopa is an oral therapy that is meant to be changed into dopamine inside the brain; when the conversion happens before it gets there, the dopamine is not able to cross the blood-brain barrier. These findings have been reported in Nature Communications.

“It is well established that gut bacteria can affect the brain. There is a continuous chemical dialogue between gut bacteria and the brain, the so-called gut-brain axis,” explained the lead investigator of this study Sahar El Aidy, Assistant Professor in Microbiology.

Levodopa is a pill that is taken up by the small intestine and moved to the brain through the bloodstream. Enzymes called decarboxylases change the drug into dopamine before it reaches the brain. To prevent that from happening, patients take decarboxylase inhibitors. 

“But the levels of levodopa that will reach the brain vary strongly among Parkinson's disease patients, and we questioned whether gut microbiota were playing a role in this difference,” noted El Aidy.

Graduate candidate Sebastiaan van Kessel used a rat model to assess the activity of a bacterial enzyme called tyrosine decarboxylase. The enzyme can convert levodopa into dopamine. The researchers showed that Enterococcus bacteria were producing that enzyme, and that even when it was required for its normal job, it continued to modify the levodopa. 

Since patients that take this drug are also given decarboxylase inhibitors, the team assessed the effect of inhibitors on the bacterial enzyme. “It turned out that, for example, the inhibitor Carbidopa is over 10,000 times more potent in inhibiting the human decarboxylase,” revealed El Aidy.

The presence of more bacteria producing the tyrosine decarboxylase (TDC) enzyme means less levodopa in the bloodstream.  / Credit: S. El Aidy, University of Groningen

The investigators wanted to see how all of this might be playing out in Parkinson’s patients and were able to obtain stool samples. That allowed them to assess how active the bacterial tyrosine decarboxylase enzyme was in these patients by measuring the activity of the gene encoding for the enzyme. Patients with higher gene activity levels were found to need higher drug doses.

“As these were stool samples, and the levodopa is absorbed in the small intestine, this was not yet solid proof. However, we confirmed our observation by showing that the higher abundance of bacterial enzyme in the small intestines of rats reduced levels of levodopa in the bloodstream,” noted El Aidy.

The team also learned that higher levels of the bacterial enzyme correlate with disease duration. Because of another drug used to treat gastrointestinal distress taken by Parkinson’s patients, an overgrowth of bacteria, including Enterococci, can develop in the small intestine. This can lead to a vicious cycle in which the symptoms of the disease only get worse.

El Aidy suggested that the bacterial decarboxylase levels can help explain why some Parkinson’s patients need more levodopa than others. “This is considered to be a problem for Parkinson's disease patients, because a higher dose will result in dyskinesia, one of the major side effects of levodopa treatment.”


Sources: AAAS/Eurekalert! via University of Groningen, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 11, 2020
Cell & Molecular Biology
JAN 11, 2020
To Save Others, Bacteria Can Self-Destruct When Infected by a Virus
Scientists were studying viruses that infect and kill bacteria as a medicine for bacterial infections over a hundred years ago, and they are a focus of recent research as well....
JAN 22, 2020
Microbiology
JAN 22, 2020
Tuberculosis Pathogen Can Survive in Soil Amoebae
Researchers have learned that the bacterium that causes bovine tuberculosis is able to survive and grow inside of amoeba that live in soil....
FEB 12, 2020
Microbiology
FEB 12, 2020
Using Genomics to Learn More About a Mumps Outbreak
Though vaccination rates are high, small mumps outbreaks sometimes still occur....
FEB 13, 2020
Genetics & Genomics
FEB 13, 2020
A Very Unusual Virus is Discovered in Brazil
Researchers in Brazil have discovered a very unusual virus infecting amoeba in an artificial lake called Lake Pampulha in the city of Belo Horizonte....
MAR 08, 2020
Microbiology
MAR 08, 2020
A Supercomputer Aids in the Hunt for COVID-19 Therapeutics
It is seeming more likely that COVID-19, caused by the coronavirus SARS-CoV-2, will impact many people....
MAR 08, 2020
Microbiology
MAR 08, 2020
Cruise Ship Travel Should Now be Deferred, Says CDC
The CDC continues to issue new guidance related to the outbreak of the SARS-CoV-2 coronavirus and the COVID-19 illness it causes....
Loading Comments...