AUG 11, 2015 8:58 AM PDT

The Secret Lives of Bacterial Toxins

WRITTEN BY: Kerry Evans
Bacteria spend a lot of time and energy avoiding detection by the immune system (no self-respecting pathogen gives up without a fight). One mechanism is to avoid being eaten by phagocytes, white blood cells charged with seeking out and destroying foreign invaders (the video below shows a phagocyte chasing bacteria in real-time). Some bacteria, such as Staphylococcus aureus, do this by forming impenetrable biofilms, while E. coli was shown to produce a protective cell-surface capsule after prolonged growth with phagocytes. Other species produce toxins to "poison" the host immune response.

A phagocyte (yellow) uses actin filaments to engulf bacteria (pink).




















ACD (for "actin crosslinking domain") is a toxin produced by a handful of bacterial species. Vibrio cholera and its close relative Vibrio vulnificus (bacteria that cause cholera and shellfish-associated food poisoning, respectively), along with Aeromonas hydrophila, all produce ACD.

Researchers knew that ACD effectively stopped immune cells from approaching and engulfing bacteria, but the precise mechanism of action was unclear. It was thought that ACD simply bound to actin monomers, preventing them from polymerizing into the functional filaments that allow immune cells to change their shape and engulf bacteria. This would require large amounts of ACD to be present in each host cell, however, researchers knew that only a small amount of ACD was required to disarm the host. This led David Heisler, a graduate student at The Ohio State University, to dig a little deeper. He suspected that ACD targeted other host proteins in addition to actin. Heisler and colleagues published their findings in the July 31 issue of Science.

In order to polymerize into filaments, actin monomers require the help of an additional protein called formin. Heisler demonstrated that in addition to binding actin, ACD effectively prevented formin from polymerizing free actin into functional filaments. Essentially, formin has a greater affinity to interact with ACD/actin complexes, than with actin alone. Thus, small amounts of ACD are able to start a chain reaction that "poisons" all of the actin in the cell.

Or, as senior author Dmitri Kudryashov puts it, "it appears that this toxin followed some of the most sophisticated battlefield strategies long before they were invented by humans: it recognizes that to win the war, one doesn't need to kill all the soldiers. All that is needed is to send in a spy to recruit a few soldiers who will betray their own army and neutralize the officers".



Sources: Eurekalert, The Scientist
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUL 22, 2020
Infographics
The Science of Sourdough
JUL 22, 2020
The Science of Sourdough
During the coronavirus stay-at-home order, many people have taken up the art of making sourdough bread and have learned ...
AUG 09, 2020
Cell & Molecular Biology
Link Between Ancient Cells Sheds Light on the Origins of Life
AUG 09, 2020
Link Between Ancient Cells Sheds Light on the Origins of Life
Microbes ruled the ancient world, and complex animals trace back to those unicellular organisms.
AUG 18, 2020
Microbiology
Syphilis was Spreading in Europe Before Columbus' Time
AUG 18, 2020
Syphilis was Spreading in Europe Before Columbus' Time
Syphilis is a sexually transmitted disease caused by a bacterium: Treponema pallidum subspecies pallidum. Its origins ha ...
AUG 21, 2020
Microbiology
Vaccine Aimed at Fungi May Also Protect Against MRSA
AUG 21, 2020
Vaccine Aimed at Fungi May Also Protect Against MRSA
Staphylococcus aureus is a common bacterium. If it stays on the skin it's harmless, but if it gets into the bloodstream, ...
SEP 13, 2020
Microbiology
Amazing Images of the Pandemic Virus SARS-CoV-2
SEP 13, 2020
Amazing Images of the Pandemic Virus SARS-CoV-2
Researchers in the lab of Camille Ehre, Ph.D. at the UNC School of Medicine have created amazing images of the pandemic ...
SEP 23, 2020
Cell & Molecular Biology
How Heparan Sulfate Helps SARS-CoV-2 Enter Cells
SEP 23, 2020
How Heparan Sulfate Helps SARS-CoV-2 Enter Cells
In order to infect a cell, the SARS-CoV-2 virus has to find a way in. It can use receptors on the surface of cells that ...
Loading Comments...