OCT 15, 2019 8:46 AM PDT

The Antimicrobial Power of Mucus is Revealed

WRITTEN BY: Carmen Leitch

Mucus lines our respiratory system, and the urinary and digestive tracts. We produce several liters of mucus every day to cover more than 200 square meters in the human body. While it’s known to be a lubricant and to act as a physical barrier against invading pathogens, scientists have found evidence suggesting that it can prevent infections in other ways. Now researchers at the Massachusetts Institute of Technology (MIT) have found that a group of sugar molecules found in mucus, called glycans, can stop bacteria from signaling to each other and halt the formation of dangerous, tough biofilms. The findings have been reported in Nature Microbiology.

Image credit: Pixabay

"What we have in mucus is a therapeutic gold mine," said Katharina Ribbeck, the Mark Hyman, Jr. Career Development Professor of Biological Engineering at MIT. "These glycans have biological functions that are very broad and sophisticated. They have the ability to regulate how microbes behave and really tune their identity."

Ribbeck and others have shown that mucus can stop microbes from binding to surfaces. In this work, the researchers wanted to know more about whether glycans are part of the reason why mucus disrupts microbial behavior. Glycans can attach to mucins, the gelatinous building blocks of mucus, to generate a structure shaped like a bottlebrush. That led Ribbeck to hypothesize that the glycans were having an antimicrobial effect.

The scientists focused on how glycans were interacting with an opportunistic microbial pathogen called Pseudomonas aeruginosa. The bacterium commonly causes serious infections in people with weak immune systems and cystic fibrosis patients. The investigators found that when bacteria were exposed to glycans isolated from mucus, they were disarmed; the microbes stopped attaching to or killing host cells, halted production of toxic molecules, and microbial genes that are involved in bacterial communications weren’t expressing. If burn wounds are treated with mucins and mucin glycans, the growth of bacteria is reduced.

"We've seen that intact mucins have regulatory effects and can cause behavioral switches in a whole range of pathogens, but now we can pinpoint the molecular mechanism and the entities that are responsible for this, which are the glycans," Ribbeck explained.

The researchers now plan to study the impact of individual glycans out of hundreds that can be found in mucus. They also want to know more about how glycans affect other kinds of pathogens, including the Candida albicans fungus and Streptococcus bacteria. They already know that glycans can stop Streptococcus from sharing genes, a primary way that drug resistance spreads among microbes.

Scientists, including Ribbeck, are also looking into the development of artificial mucus, which might be a new approach to fighting pathogens that does not involve traditional antibiotic drugs.

"What we find here is that nature has evolved the ability to disarm difficult microbes, instead of killing them. This would not only help limit selective pressure for developing resistance, because they are not under pressure to find ways to survive, but it should also help create and maintain a diverse microbiome," noted Ribbeck. Glycans may help regulate that microbial population.

"This is a theme that is likely at play in many systems where the goal is to shape and manipulate communities inside the body, not just in humans but throughout the animal kingdom," Ribbeck concluded.


Sources: AAAS/Eurekalert! via MIT, Nature Microbiology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 30, 2020
Microbiology
JAN 30, 2020
25% of Antibiotic-Resistant Bacteria Can Spread Resistance Directly to Other Microbes
This research also suggests that antibiotics do not increase the rate at which bacteria acquire drug resistance genes....
FEB 03, 2020
Drug Discovery & Development
FEB 03, 2020
HIV Viral Structures Improve Therapeutics
Researchers have recently discovered how a powerful class of HIV drugs bind to a key piece of HIV machinery. Their findings, for the first time, shows how ...
FEB 04, 2020
Microbiology
FEB 04, 2020
Revealing How a Common Virus Evades the Immune System
The human metapneumovirus (HMPV) might now be well-known, but it is the second biggest cause of respiratory infections....
FEB 16, 2020
Microbiology
FEB 16, 2020
Images of Coronavirus Are Released as First Death Outside China is Reported
Previously known as 2019-nCoV, the virus has a new name: SARS-CoV-2, which is the cause of what's being called COVID-19 disease....
FEB 23, 2020
Cell & Molecular Biology
FEB 23, 2020
A New Class of Bacterial Enzymes is Discovered
Bacterial enzymes can serve many processes, from breaking down pollutants and digesting foods to metabolizing drugs....
MAR 17, 2020
Microbiology
MAR 17, 2020
A Toxin Produced by C.difficile Can Damage Intestinal Stem Cells
Intestinal stem cells help regenerate the lining of the intestine, and that lining or epithelium plays a number of critical roles....
Loading Comments...