DEC 15, 2019 6:41 AM PST

Potential Therapeutics for Nipah Virus Are Identified

WRITTEN BY: Carmen Leitch

Nipah virus infections are highly variable; they may not cause any symptoms, but they can also cause serious respiratory infections and fatal brain inflammation (encephalitis). Many people that are treated after infection survive with no long-term consequences, but about twenty percent of those that live through the encephalitis end up with neurological damage that can cause seizures or changes in personality.

Under a highly magnified view of 168,000x, this 1999 transmission electron micrographic shows a Nipah virus nucleocapsid / Credit: CDC/ C. S. Goldsmith; P. Rota

The virus is rare, but it has caused outbreaks. It was first discovered in Malaysia in 1998 and was named for the village where it first infected people, who were pig farmers. There were no infections reported in the country after 1999.

However, outbreaks still happen in India and Bangladesh. Bats are the primary reservoir of the virus, which also infects pigs and humans. Humans become infected after close contact with bats, like when raw date palm sap that is contaminated with infectious bat droppings is consumed, or when they have close contact with infected pigs. Once people are infected, they can also pass it on to other people, usually their close family or caregivers.

Nipah virus causes only mild infections in pigs, but during the 1999 outbreak, one hundred people of the 300 that were infected ended up dying from the virus. According to the World Health Organization, the fatality rate has an estimated range of 40 to 75 percent, which can depend on the quality of local clinics and surveillance of the virus.

There are currently no treatments or vaccines for Nipah virus, but new research has identified therapeutic targets that may help treat the infections.

In new research reported in PLOS Neglected Tropical Diseases, researchers from the Indian Institute of Science Education and Research Pune led by M.S. Madhusudhan generated three-dimensional models of nine proteins that Nipah virus generates. Using these models, they were able to design molecules that can block the activity of the viral proteins. Four peptide inhibitors and 146 small molecules inhibitors were proposed.

Using computational tools, they assessed the efficacy of these theoretical proteins against fifteen different strains of the virus. Thirteen of their hypothetical inhibitors were listed as the most promising using criteria like stability, binding strength, and efficacy against multiple Nipah virus strains.

The researchers have suggested that the thirteen candidates would work against every known strain of Nipah virus, and may also work against other related zoonotic viruses. They are hopeful that future computational studies can help deploy these therapeutic molecules.

Sources: AAAS/Eurekalert! via PLOS, WHO, CDC, PLOS Neglected Tropical Diseases

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 09, 2020
Microbiology
Mysterious Illness in Children May be Related to COVID-19
MAY 09, 2020
Mysterious Illness in Children May be Related to COVID-19
Once thought to be mostly unaffected by the virus, rare cases of an inflammatory syndrome are emerging in some kids that ...
MAY 15, 2020
Immunology
Support the Microbiome So the Immune System Can Do Its Job
MAY 15, 2020
Support the Microbiome So the Immune System Can Do Its Job
Research has long connected the human microbiome and immune system function, and now a recent study pinpoints a key poin ...
JUN 08, 2020
Microbiology
Concerns Remain About the Accuracy of COVID-19 Tests
JUN 08, 2020
Concerns Remain About the Accuracy of COVID-19 Tests
Diagnostic tests have recently been getting a lot of attention because of the COVID-19 pandemic.
JUN 27, 2020
Microbiology
Learning More About How Bacteria Become Dangerous
JUN 27, 2020
Learning More About How Bacteria Become Dangerous
We have to share the world with microbes; they can grow almost anywhere, from hydrothermal vents deep in the sea, to the ...
JUL 27, 2020
Chemistry & Physics
Cobalt-doped titanium-dioxide stops the reproduction of listeria monocytogenes
JUL 27, 2020
Cobalt-doped titanium-dioxide stops the reproduction of listeria monocytogenes
Scientists suggest adding cobalt-doped titanium-dioxide (CoO-TiO2) to foods in order to prevent the spread of listeria, ...
AUG 04, 2020
Microbiology
Why the Brain Parasite You May Carry Isn't a Problem
AUG 04, 2020
Why the Brain Parasite You May Carry Isn't a Problem
Toxoplasma gondii is a parasite transmitted by cats and contaminated meat, and it's thought that over 30 million America ...
Loading Comments...